Many of the best-performing perovskite photovoltaic devices make use of 2D/3D interfaces, which improve efficiency and stability - but it remains unclear how the conversion of 3D-to-2D perovskite occurs and how these interfaces are assembled. Here, we use in situ Grazing-Incidence Wide-Angle X-Ray Scattering to resolve 2D/3D interface formation during spin-coating. We observe progressive dimensional reduction from 3D to n = 3 → 2 → 1 when we expose (MAPbBr)(FAPbI) perovskites to vinylbenzylammonium ligand cations. Density functional theory simulations suggest ligands incorporate sequentially into the 3D lattice, driven by phenyl ring stacking, progressively bisecting the 3D perovskite into lower-dimensional fragments to form stable interfaces. Slowing the 2D/3D transformation with higher concentrations of antisolvent yields thinner 2D layers formed conformally onto 3D grains, improving carrier extraction and device efficiency (20% 3D-only, 22% 2D/3D). Controlling this progressive dimensional reduction has potential to further improve the performance of 2D/3D perovskite photovoltaics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8190276PMC
http://dx.doi.org/10.1038/s41467-021-23616-9DOI Listing

Publication Analysis

Top Keywords

progressive dimensional
12
dimensional reduction
12
2d/3d interfaces
8
2d/3d
6
multication perovskite
4
perovskite 2d/3d
4
interfaces
4
interfaces form
4
form progressive
4
reduction best-performing
4

Similar Publications

Background: Hallux valgus (HV) is a complex, multiplanar deformity. In this study, we examined the interrelationships between various components of this deformity using weightbearing computed tomography (WBCT). We hypothesized that the severity of traditional axial plane deformities would correlate with malpositioning of the metatarsosesamoid complex, first-ray coronal rotational deformity, and malalignment of the hindfoot and midfoot.

View Article and Find Full Text PDF

Refractive index (RI) and temperature (T) are both critical environmental parameters for environmental monitoring, food production, and medical testing. The paper develops a D-shaped photonic crystal fiber (PCF) sensor to measure RI and T simultaneously. Its cross-sectional structure encompasses a hexagonal-hole lattice, with one hole selectively filled with toluene for temperature sensing.

View Article and Find Full Text PDF

Kirsten Rat Sarcoma viral oncogene homolog (KRAS) is a frequently occurring mutation in non-small-cell lung cancer (NSCLC) and influences cancer treatment and disease progression. In this study, a machine learning (ML) pipeline was applied to radiomic features extracted from public and internal CT images to identify KRAS mutations in NSCLC patients. Both datasets were analyzed using parametric ( test) and non-parametric statistical tests (Mann-Whitney U test) and dimensionality reduction techniques.

View Article and Find Full Text PDF

Salivary gland tumor is one of the most common tumors in oral and maxillofacial regions. The diagnosis and treatment of salivary gland tumors had been a clinical characteristic project in Peking University School and Hospital of Stomatology since long time ago. Here we introduced the research progress in diagnosis and treatment of salivary gland tumors during the past 10 years.

View Article and Find Full Text PDF

Proteins are fundamental carriers as the structural elements and biochemically active entities responsible for catalysis, transport, and regulation. These functions are depending on the protein folding into precise three-dimensional structures, interacting with ligands, and conformational changes. This article reviews the recent progress of nanopores in single-molecule protein sensing, involving the identification of polypeptides and proteins, the conformation changes of protein folding, the molecular structure responsible to the pH of solutions, the molecular interactions, and protein sequencing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!