Systemic lupus erythematosus (SLE) is associated with an IL-2-deficient state, with regulatory T cells (Tregs) showing diminished immune regulatory capacity. A low dose of IL-2 has shown encouraging clinical benefits in SLE patients; however, its clinical utility is limited because of the requirement of daily injections and the observation of increase in proinflammatory cytokines and in non-Tregs. We recently showed that a fusion protein of mouse IL-2 and mouse IL-2Rα (CD25), joined by a noncleavable linker, was effective in treating diabetes in NOD mice by selectively inducing Treg expansion. In this report, we show that mouse IL-2 (mIL-2)/CD25 at doses up to 0.5 mg/kg twice a week induced a robust Treg expansion without showing signs of increase in the numbers of NK, CD4Foxp3, or CD8 T cells or significant increase in proinflammatory cytokines. In both NZB × NZW and MRL/lpr mice, mIL-2/CD25 at 0.2-0.4 mg/kg twice a week demonstrated efficacy in inducing Treg expansion, CD25 upregulation, and inhibiting lupus nephritis based on the levels of proteinuria, autoantibody titers, and kidney histology scores. mIL-2/CD25 was effective even when treatment was initiated at the time when NZB × NZW mice already showed signs of advanced disease. Furthermore, we show coadministration of prednisolone, which SLE patients commonly take, did not interfere with the ability of mIL-2/CD25 to expand Tregs. The prednisolone and mIL-2/CD25 combination treatment results in improvements in most of the efficacy readouts relative to either monotherapy alone. Taken together, our results support further evaluation of IL-2/CD25 in the clinic for treating immune-mediated diseases such as SLE.

Download full-text PDF

Source
http://dx.doi.org/10.4049/jimmunol.2100078DOI Listing

Publication Analysis

Top Keywords

treg expansion
12
fusion protein
8
systemic lupus
8
lupus erythematosus
8
sle patients
8
increase proinflammatory
8
proinflammatory cytokines
8
mouse il-2
8
inducing treg
8
mg/kg week
8

Similar Publications

Background: Immune checkpoint inhibitors targeting programmed cell death protein-1 (PD-1) are the first line of treatment for many solid tumors including melanoma. PD-1 blockade enhances the effector functions of melanoma-infiltrating CD8 T cells, leading to durable tumor remissions. However, 55% of patients with melanoma do not respond to treatment.

View Article and Find Full Text PDF

Regulatory T cells (Tregs) require IL-2 for survival in the periphery, yet how IL-2 shapes Treg heterogeneity remains poorly defined. Here we show that inhibition of IL-2R signaling in post-thymic Tregs leads to a preferential early loss of circulating Tregs (cTregs). Gene expression of cTregs was more dependent on IL-2R signaling than effector Tregs (eTregs).

View Article and Find Full Text PDF

Secondary lymphedema is a common sequel of oncologic surgery and presents a global health burden still lacking pharmacological treatment. The infiltration of the lymphedematous extremities with CD4T cells influences lymphedema onset and emerges as a promising therapy target. Here, we show that the modulation of CD4FOXP3CD25regulatory T (T) cells upon anti-CTLA4 treatment protects against lymphedema development in patients with melanoma and in a mouse lymphedema model.

View Article and Find Full Text PDF

Exposure to ultraviolet-B (UVB) induces the expansion of regulatory T (Treg) cells expressing proenkephalin (PENK) and amphiregulin (AREG) with a healing function in the skin. It is unclear how this UVB exposure affects the functionally distinct subsets of skin Treg cells. In this study, we have demonstrated that skin-resident CD81Treg cells expressing both Penk and Areg expanded after UVB irradiation.

View Article and Find Full Text PDF

Staphylococcus aureus (S. aureus) is a leading cause of Periprosthetic  joint  infection (PJI), a severe complication after joint arthroplasty. Immunosuppression is a major factor contributing to the infection chronicity of S.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!