Expansion microscopy (ExM) is a technique in which swellable hydrogel-embedded biological samples are physically expanded to effectively increase imaging resolution. Here, we develop thermoresponsive reversible ExM (T-RevExM), in which the expansion factor can be thermally adjusted in a reversible manner. In this method, samples are embedded in thermoresponsive hydrogels and partially digested to allow for reversible swelling of the sample-gel hybrid in a temperature-dependent manner. We first synthesized hydrogels exhibiting lower critical solution temperature (LCST)- and upper critical solution temperature (UCST)-phase transition properties with -alkyl acrylamide or sulfobetaine monomers, respectively. We then formed covalent hybrids between the LCST or UCST hydrogel and biomolecules across the cultured cells and tissues. The resulting hybrid could be reversibly swelled or deswelled in a temperature-dependent manner, with LCST- and UCST-based hybrids negatively and positively responding to the increase in temperature (termed thermonegative RevExM and thermopositive RevExM, respectively). We further showed reliable imaging of both unexpanded and expanded cells and tissues and demonstrated minimal distortions from the original sample using conventional confocal microscopy. Thus, T-RevExM enables easy adjustment of the size of biological samples and therefore the effective magnification and resolution of the sample, simply by changing the sample temperature.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.1c07592 | DOI Listing |
Front Cell Dev Biol
January 2025
Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia.
Introduction: Cytomegalovirus (CMV) infection reorganizes early endosomes (EE), recycling endosome (RE), and trans-Golgi network (TGN) and expands their intermediates into a large perinuclear structure that forms the inner part of the cytoplasmic assembly complex (AC). The reorganization begins and results with the basic configuration (known as pre-AC) in the early (E) phase of infection, but the sequence of developmental steps is not yet well understood. One of the first signs of the establishment of the inner pre-AC, which can be observed by immunofluorescence, is the accumulation of Rab10.
View Article and Find Full Text PDFNanoscale
January 2025
State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China.
Liquid biopsies are expected to advance cancer management, and particularly physical cues are gaining attention for indicating tumorigenesis and metastasis. Atomic force microscopy (AFM) has become a standard and important tool for detecting the mechanical properties of single living cells, but studies of developing AFM-based methods to efficiently measure the mechanical properties of circulating tumor cells (CTCs) in liquid biopsy for clinical utility are still scarce. Herein, we present a proof-of-concept study based on the complementary combination of AFM and microfluidics, which allows label-free sorting of individual CTCs and subsequent automated AFM measurements of the mechanical properties of CTCs.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
School of Engineering, Mackenzie Presbyterian University, São Paulo 01302-907, Brazil.
Ceramic detachments in cladding systems are indicative of adhesion loss between the ceramic tiles and the substrate or its adhesive mortar due to inadequate quality workmanship, the quality of the adhesive mortar or that of the ceramic material, whether acting simultaneously or not. The shear stresses resulting from the ceramic tiles' expansion due to humidity accelerate this process. There is a shortage of studies on the quality of ceramic tiles and adhesive mortars.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan 430068, China.
To achieve resourceful utilization of dredged sludge, lightweight treatment was performed on sludge from Xunsi River in Wuhan using fly ash, cement, and expanded polystyrene (EPS) particles. Density tests and unconfined compressive strength (UCS) tests were conducted on the composite stabilized sludge lightweight soil to determine the optimal mix ratio for high-quality roadbed fill material with low self-weight and high strength. Subsequently, microstructural tests, including X-ray diffraction (XRD) and scanning electron microscopy (SEM), were conducted.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Faculty of Technical Chemistry, Institute of Chemical Technologies and Analytics, Technische Universität Wien, Vienna 1060, Austria.
Atomic force microscopy-infrared spectroscopy (AFM-IR) is a photothermal scanning probe technique that combines nanoscale spatial resolution with the chemical analysis capability of mid-infrared spectroscopy. Using this hybrid technique, chemical identification down to the single molecule level has been demonstrated. However, the mechanism at the heart of AFM-IR, the transduction of local photothermal heating to cantilever deflection, is still not fully understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!