The growth of pulsed electromagnetic field (PEMF) therapy and its progress over the years for use in post-operative bone growth has been revolutionary in its effect on bone tissue proliferation and vascular flow. However, further progress in PEMF therapy has been difficult due to lack of more evidence-based understanding of its mechanism of action. Our objective was to review the current understanding of bone growth physiology, the mechanism of PEMF therapy action along with its application in spinal surgery and associated outcomes. The authors of this review examined multiple controlled, comparative, and cohort studies to compare fusion rates of patients undergoing PEMF stimulation. Examining spinal fusion rates, a rounded comparison of post-fusion outcomes with and without bone stimulator was performed. Results showed that postoperative spinal surgery PEMF stimulation had higher rates of fusion than control groups. Though PEMF therapy was proven more effective, multiple factors contributed to difficulty in patient compliance for use. Extended timeframe of treatment and cost of treatment were the main obstacles to full compliance. This review showed that PEMF therapy presented an increased rate of recovery in patients, supporting the use of these devices as an effective post-surgical aid. Given the recent advances in the development of PEMF devices, affordability and access will be much easier suited to the patient population, allowing for more readily available treatment options.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8273786 | PMC |
http://dx.doi.org/10.3340/jkns.2020.0269 | DOI Listing |
Sci Rep
January 2025
Department of Spine and Spinal Cord Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, No. 7 Weiwu Road, Jinshui District, Zhengzhou, 450003, Henan, China.
The use of pulsed electromagnetic field (PEMF) has demonstrated effectiveness in the management of femoral head osteonecrosis as well as nonunion fractures; however, the effects of PEMF on preventing glucocorticoid-induced osteoporosis (GIOP) have not been extensively studied. The aim of this investigation was to explore the effectiveness of PEMF stimulation in averting GIOP in rats and uncover the potential fundamental mechanisms involved. A total of seventy-two adult male Wistar rats composed the experimental group and were subsequently assigned to three groups for treatment.
View Article and Find Full Text PDFJ Clin Med
December 2024
Pető András Faculty, Semmelweis University, 1125 Budapest, Hungary.
Cerebral palsy (CP) manifests with abnormal posture and impaired selective motor control, notably affecting trunk control and dynamic balance coordination, leading to inadequate postural control. Previous research has indicated the benefits of pulsed electromagnetic field (PEMF) therapy for various musculoskeletal and neurological conditions. Therefore, we conducted a randomized pilot study to assess the feasibility of our preliminary research design and examine the effect of the PEMF treatment among children with CP.
View Article and Find Full Text PDFOrthop Rev (Pavia)
October 2024
Carolina Neurosurgery and Spine Associates, Charlotte, North Carolina, USA.
Background: Certain demographics and/or risk factors contribute to complications following cervical spinal surgery including pseudarthrosis, prolonged pain, and reduced quality of life (QoL). Pulsed electromagnetic field (PEMF) stimulation is a non-invasive therapy that may enhance fusion success in at-risk patients.
Objective: To evaluate the safety and efficacy of post-operative adjunctive PEMF therapy following cervical spinal surgery in subjects at risk for pseudarthrosis.
Int J Mol Sci
November 2024
Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy.
Alzheimer's disease (AD) is a neurodegenerative pathology covering about 70% of all cases of dementia. It is associated with neuroinflammation and neuronal cell death, which are involved in disease progression. There is a lack of effective therapies, and halting this process represents a therapeutic challenge.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland.
Peripheral nerve regeneration remains a major challenge in neuroscience, despite advancements in understanding its mechanisms. Current treatments, including nerve transplantation and drug therapies, face limitations such as invasiveness and incomplete recovery of nerve function. Physical therapies, like pulsed electromagnetic fields (PEMF) and low-intensity ultrasound (LIPUS), are gaining attention for their potential to enhance regeneration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!