Effects of Orthoses on Standing Postural Control and Muscle Activity in Children With Cerebral Palsy.

Pediatr Phys Ther

Early Intervention Associates (Dr Leonard), Rockville, Maryland; Doctoral Programs in Pediatric Science (Dr Sweeney), Rocky Mountain University of Health Professions, Provo, Utah; Functional and Applied Biomechanical Lab at National Institutes of Health (Dr Damiano), NIH Bethesda, Maryland; School of Medicine (Dr Bjornson), University of Washington, Seattle, Washington; Marymount University Program in Physical Therapy (Dr Ries), Marymount University, Arlington, Virginia.

Published: July 2021

Purpose: This exploratory study assessed postural control and muscle activity in children with cerebral palsy while standing barefoot (BF), in prescribed ankle-foot orthoses (AFOs) and in distal control orthoses (DCOs), which stabilized foot-ankle and deliberately aligned the shank.

Methods: This within-subject study evaluated 10 participants, Gross Motor Functional Classification System level III, across the 3 ankle-foot conditions in: (1) static standing duration and (2) modified Clinical Test of Sensory Interaction on Balance with electromyography (EMG) on 7 muscles.

Results: Participants had significantly decreased center of gravity (COG) velocity sway in DCO versus BF and AFO, decreased loss of balance (LOB), and increased standing for DCO versus BF. DCO had minimal effect on EMG activity.

Conclusions: DCO provided significant stabilizing effects on COG sway velocity, standing duration, and LOB. DCO may be effective in balance training. It is unclear whether benefit was derived from stabilization of the ankle joint, the resultant shank alignment, or both.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8462467PMC
http://dx.doi.org/10.1097/PEP.0000000000000802DOI Listing

Publication Analysis

Top Keywords

postural control
8
control muscle
8
muscle activity
8
activity children
8
children cerebral
8
cerebral palsy
8
standing duration
8
dco versus
8
standing
5
dco
5

Similar Publications

Neuromuscular Strategies in Dominant and Non-Dominant Legs in Dancers During Dynamic Balance Tasks.

J Dance Med Sci

January 2025

Frontier Research Institute of Convergence Sports Science, College of Educational Sciences, Yonsei University, Seoul, Korea.

Ballet-based dance training emphasizes the equal development of both legs. However, dancers often perceive differences between their legs during balance or landing. There still needs to be more consensus on the functional difference between dominant (D) and non-dominant legs (ND).

View Article and Find Full Text PDF

Cerebral palsy (CP) manifests with abnormal posture and impaired selective motor control, notably affecting trunk control and dynamic balance coordination, leading to inadequate postural control. Previous research has indicated the benefits of pulsed electromagnetic field (PEMF) therapy for various musculoskeletal and neurological conditions. Therefore, we conducted a randomized pilot study to assess the feasibility of our preliminary research design and examine the effect of the PEMF treatment among children with CP.

View Article and Find Full Text PDF

Background: Semi-aquatic mammals represent a transitional phase in the evolutionary spectrum between terrestrial and aquatic mammals. The sense of balance is crucial for mammalian locomotion, and in semi-aquatic mammals, the structural foundation of this sense (the vestibular system) shows distinct morphological adaptations to both aquatic and terrestrial environments compared to their terrestrial counterparts. Despite this, the precise molecular mechanisms driving these adaptations remain elusive.

View Article and Find Full Text PDF

The integration of different sensory streams is required to dynamically estimate how our head and body are oriented and moving relative to gravity. This process is essential to continuously maintain stable postural control, autonomic regulation, and self-motion perception. The nodulus/uvula (NU) in the posterior cerebellar vermis is known to integrate canal and otolith vestibular input to signal angular and linear head motion in relation to gravity.

View Article and Find Full Text PDF

Objective: To compare fall risk scores of hearing aids embedded with inertial measurement units (IMU-HAs) and powered by artificial intelligence (AI) algorithms with scores by trained observers.

Study Design: Prospective, double-blinded, observational study of fall risk scores between trained observers and those of IMU-HAs.

Setting: Tertiary referral center.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!