Bacterial RF3 senses chaperone function in co-translational folding.

Mol Cell

Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany. Electronic address:

Published: July 2021

Molecular chaperones assist with protein folding by interacting with nascent polypeptide chains (NCs) during translation. Whether the ribosome can sense chaperone defects and, in response, abort translation of misfolding NCs has not yet been explored. Here we used quantitative proteomics to investigate the ribosome-associated chaperone network in E. coli and the consequences of its dysfunction. Trigger factor and the DnaK (Hsp70) system are the major NC-binding chaperones. HtpG (Hsp90), GroEL, and ClpB contribute increasingly when DnaK is deficient. Surprisingly, misfolding because of defects in co-translational chaperone function or amino acid analog incorporation results in recruitment of the non-canonical release factor RF3. RF3 recognizes aberrant NCs and then moves to the peptidyltransferase site to cooperate with RF2 in mediating chain termination, facilitating clearance by degradation. This function of RF3 reduces the accumulation of misfolded proteins and is critical for proteostasis maintenance and cell survival under conditions of limited chaperone availability.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.molcel.2021.05.016DOI Listing

Publication Analysis

Top Keywords

chaperone function
8
chaperone
5
bacterial rf3
4
rf3 senses
4
senses chaperone
4
function co-translational
4
co-translational folding
4
folding molecular
4
molecular chaperones
4
chaperones assist
4

Similar Publications

Oil palm () yield is impacted by abiotic stresses, leading to significant economic losses. To understand the core abiotic stress transcriptome (CAST) of oil palm, we performed RNA-Seq analyses of oil palm leaves subjected to drought, salinity, waterlogging, heat, and cold stresses. A total of 19,834 differentially expressed genes (DEGs) were identified.

View Article and Find Full Text PDF

The "Ins and Outs and What-Abouts" of H2A.Z: A Tribute to C. David Allis.

J Biol Chem

January 2025

Institute for Genetics, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 58-62, 35390 Giessen, Germany. Electronic address:

In 2023, the brilliant chromatin biologist C. David Allis passed away leaving a large void in the scientific community and broken hearts in his family and friends. With this review, we want to tribute Dave's enduring inspiration by focusing on the histone variant H2A.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a prototypical neurodegenerative disorder, predominantly affecting individuals in the presenile and elderly populations, with an etiology that remains elusive. This investigation aimed to elucidate the alterations in anoikis-related genes (ARGs) in the AD brain, thereby expanding the repertoire of biomarkers for the disease. Using publically available gene expression data for the hippocampus from both healthy and AD subjects, differentially expressed genes (DEGs) were identified.

View Article and Find Full Text PDF

Hsf1 is essential for proteotoxic stress response in smyd1b-deficient embryos and fish survival under heat shock.

FASEB J

January 2025

Department of Biochemistry and Molecular Biology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, Maryland, USA.

Molecular chaperones play critical roles in post-translational maintenance in protein homeostasis. Previous studies have shown that loss of Smyd1b function results in defective myofibril organization and dramatic upregulation of heat shock protein gene (hsp) expression in muscle cells of zebrafish embryos. To investigate the molecular mechanisms and functional importance of this stress response, we characterized changes of gene expression in smyd1b knockdown and knockout embryos using RNA-seq.

View Article and Find Full Text PDF

Temperate fruit trees rely on environmental and endogenous signals to trigger dormancy release and flowering. However, the knowledge of DELLA protein PmRGL2, a Prunus mume homolog of REPRESSOR OF GA-Like 2 (RGL2), which serves as an important inhibitory factor in gibberellin (gibberellin acid [GA]) signalling, is limited related to on its regulatory effects on dormancy release and flowering. In our study, the protein-protein interaction assays showed an interaction between PmRGL2 and PmFRL3, a Prunus mume homolog of FRIGIDA-LIKE (FRL).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!