To maximize survival probability, animals must assess predation risks and adopt flexible defensive strategies based on specific conditions. Pit vipers utilize venom for predation and self-defense, and venom status significantly influences its effectiveness. Thus, pit vipers may evaluate their venom reserve and adopt corresponding defensive tactics. Twenty-three sharp-snouted pit vipers (Deinagkistrodon acutus) were grouped by different venom status and were subjected to eight behavior trials. Subjects' defensive behaviors were recorded and analyzed. Results showed that the normal venom group displayed stable responses across the trials. The low venom group showed fewer strikes and more fleeing behaviors at the end of experiments. After given prolonged intervals for replenishing the venom, significant increases of strike behaviors were observed in the replenishing venom group. These results demonstrated the capability of adopting flexible defensive tactics based on varied venom reserve and provided new evidence for venom-status-recognition.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.toxicon.2021.06.003 | DOI Listing |
Trans R Soc Trop Med Hyg
January 2025
Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501, Costa Rica.
Background: The genus Metlapilcoatlus was recently erected to include six species of stout venomous snakes, known as the jumping pitvipers, which inhabit mountainous areas of Mesoamerica. This group maintains affinity with Atropoides picadoi, another jumping pitviper with restricted distribution in Costa Rica and Panama. Although the venom of A.
View Article and Find Full Text PDFSci Rep
December 2024
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
Inoculation of Bothrops jararaca snake venom (BjV) induces thrombocytopenia in humans and various animal species. Although several BjV toxins acting on hemostasis have been well characterized in vitro, it is not known which one is responsible for inducing thrombocytopenia in vivo. In previous studies, we showed that BjV incubated with metalloproteinase or serine proteinase inhibitors and/or anti-botrocetin antibodies still induced thrombocytopenia in rats and mice.
View Article and Find Full Text PDFToxins (Basel)
December 2024
Immunopathology Laboratory, Butantan Institute, São Paulo 05585-090, Brazil.
Jararhagin-C (JarC) is a protein from the venom of consisting of disintegrin-like and cysteine-rich domains. JarC shows a modulating effect on angiogenesis and remodeling of extracellular matrix constituents, improving wound healing in a mouse experimental model. JarC is purified from crude venom, and the yield is less than 1%.
View Article and Find Full Text PDFToxins (Basel)
December 2024
Poison Control Center, The University of Arizona College of Pharmacy, Tucson, AZ 85724, USA.
The onset, progression, and severity of pain following rattlesnake envenomation are highly variable between patients. Pain can be severe and persistent, seemingly refractory to opioid analgesics. The ability of antivenom to directly relieve pain has not been well studied.
View Article and Find Full Text PDFToxins (Basel)
November 2024
Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Quito 170525, Ecuador.
Previous proteomic studies of viperid venom revealed that it is mainly composed of metalloproteinases (SVMPs), serine proteinases (SVSPs), phospholipase A2 (PLA2), and C-type lectins (CTLs). However, other proteins appear in minor amounts that affect prey and need to be identified. This study aimed to identify novel toxic proteins in the venom gland transcriptome of and , using data from NCBI.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!