Deletion of lncRNA XACT does not change expression dosage of X-linked genes, but affects differentiation potential in hPSCs.

Cell Rep

Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan; The Institute of Medical Sciences, Tokai University, Isehara, Japan; Micro/Nano Technology Center, Tokai University, Hiratsuka, Kanagawa, Japan; Center for Regenerative Medicine, National Center for Child Health and Development, Tokyo, Japan. Electronic address:

Published: June 2021

Female human pluripotent stem cells (hPSCs) regularly show erosion of X chromosome inactivation featured by the loss of the long non-coding (lnc) RNA XIST and the accumulation of lncXACT. Here, we report that a common mechanism for the initiation of erosion depends on XIST loss but not XACT accumulation on inactive X chromosomes. We further demonstrate that XACT deletion does not affect X-linked gene dosage in eroded hPSCs and that aberrant XIST RNA diffusion induced by the CRISPR activation system is independent of the presence of XACT RNA. In contrast, the deletion of XACT results in the upregulation of neuron-related genes, facilitating neural differentiation in both male and eroded female hPSCs. XACT RNA repression by CRIPSR inhibition results in the same phenotype. Our study finds that XACT is dispensable for maintaining the erosion of X-lined gene repression on inactive X chromosomes but affects neural differentiation in hPSCs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.celrep.2021.109222DOI Listing

Publication Analysis

Top Keywords

inactive chromosomes
8
xact rna
8
neural differentiation
8
xact
7
hpscs
5
deletion lncrna
4
lncrna xact
4
xact change
4
change expression
4
expression dosage
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!