Aim: Chronodisruption desynchronizes peripheral clocks and leads to metabolic diseases. Feeding cues are important synchronizers of peripheral clocks and influence rhythmic oscillations in intestinal microbiota and their metabolites. We investigated whether chronic jetlag, mimicking frequent time zone travelling, affected the diurnal fluctuations in faecal short-chain fatty acid (SCFA) levels, that feed back to the gut clock to regulate rhythmicity in gut function.
Methods: Rhythms in faecal SCFAs levels and in the expression of clock genes and epithelial markers were measured in the colonic mucosa of control and jetlagged mice. The entraining effect of SCFAs on the rhythm in clock gene mRNA expression was studied in primary colonic crypts. The role of the circadian clock in epithelial marker expression was studied in Arntl mice.
Results: Chronic jetlag increased body weight gain and abolished the day/night food intake pattern which resulted in a phase-delay in the rhythm of faecal SCFAs that paralleled the shift in the expression of mucosal clock genes. This effect was mimicked by stimulation of primary colonic crypts from control mice with SCFAs. Jetlag abolished the rhythm in Tnfα, proglucagon and ghrelin expression but not in the expression of tight junction markers. Only a dampening in plasma glucagon-like peptide-1 but not in ghrelin levels was observed. Rhythms in ghrelin but not proglucagon mRNA expression were abolished in Arntl mice.
Conclusion: The altered food intake pattern during chronodisruption corresponds with the changes in rhythmicity of SCFA levels that entrain clock genes to affect rhythms in mRNA expression of gut epithelial markers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/apha.13703 | DOI Listing |
Invest Ophthalmol Vis Sci
January 2025
Department of Ophthalmology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China.
Purpose: Chronic jet lag (CJL) is known to disrupt circadian rhythms, which regulate various physiological processes, including ocular surface homeostasis. However, the specific effects of CJL on lacrimal gland function and the underlying cellular mechanisms remain poorly understood.
Methods: A CJL model was established using C57BL/6J mice.
Biomed J
January 2025
ٰLaboratorio de Cronobiología, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes/CONICET. Buenos Aires, Argentina. Electronic address:
The circadian system is composed by a central hypothalamic clock at the suprachiasmatic nuclei (SCN) that communicates with peripheral circadian oscillators for daily coordination of behavior and physiology. The SCN entrain to the environmental 24-h light-dark (LD) cycle and drive daily rhythms of internal synchronizers such as core body temperature, hypothalamic-hypophysary hormones, sympathetic/parasympathetic activity, as well as behavioral and feeding-fasting rhythms, which supply signals setting core molecular clocks at central and peripheral tissues. Steady phase relationships between the SCN and peripheral oscillators keep homeostatic processes such as microbiota/microbiome composition/activity, metabolic supply/demand, energy balance, immunoinflammatory process, sleep amount and quality, psychophysiological stress, etc.
View Article and Find Full Text PDFCell Mol Gastroenterol Hepatol
December 2024
Gut Peptide Research Lab, Translational Research for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium. Electronic address:
Background & Aims: Circadian disturbances result in adverse health effects, including gastrointestinal symptoms. We investigated which physiological pathways in jejunal mucosa were disrupted during chronic jetlag and prevented during time-restricted feeding (TRF). Enteroids from Bmal1 and Bmal1 mice were used to replicate the processes that were affected by chronic jetlag and rescued by TRF.
View Article and Find Full Text PDFBiol Sex Differ
December 2024
Laboratory of Regulation in Metabolism and Behavior, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
Background: The circadian clock integrates external environmental changes into the internal physiology of organisms. Perturbed circadian clocks due to misaligned light cycles increase the risk of diseases, including metabolic disorders. However, the effects of sex differences in this context remain unclear.
View Article and Find Full Text PDFSleep Health
November 2024
Universidade Federal do Rio Grande do Sul, Faculty of Medicine, Postgraduate Program in Health Sciences: Cardiology and Cardiovascular Sciences, Porto Alegre, Rio Grande do Sul, Brazil; Universidade Federal do Rio Grande do Norte, Faculty of Physical Education, Postgraduate Program in Physical Education, Natal, Rio Grande do Norte, Brazil.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!