Sicily, during the 9th-12th century AD, thrived politically, economically, and culturally under Islamic political rule and the capital of Palermo stood as a cultural and political centre in the Mediterranean Islamic world. However, to what extent the lifeways of the people that experienced these regimes were impacted during this time is not well understood, particularly those from lesser studied rural contexts. This paper presents the first organic residue analysis of 134 cooking pots and other domestic containers dating to the 9th -12th century in order to gain new insights into the culinary practices during this significant period. Ceramics from three sites in the urban capital of Palermo and from the rural town of Casale San Pietro were analysed and compared. The multi-faceted organic residue analysis identified a range of commodities including animal products, vegetables, beeswax, pine and fruit products in the ceramics, with a complex mixing of resources observed in many cases, across all four sites and ceramic forms. Alongside the identification of commodities and how they were combined, new light has been shed on the patterning of resource use between these sites. The identification of dairy products in calcite wares from the rural site of Casale San Pietro and the absence of dairy in ceramics from the urban centre of Palermo presents interesting questions regarding the role of rural sites in food consumption and production in Islamic Sicily. This is the first time organic residue analysis of ceramics has been used to explore foodways in a medieval multi-faith society and offers new pathways to the understanding of pottery use and resources that were prepared, consumed and combined, reflecting cuisine in different socio-economic environments within the pluralistic population of medieval Sicily.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8189454 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0252225 | PLOS |
Chemosphere
December 2024
Key Laboratory of Health Intelligent Perception and Ecological Restoration of River and Lake, Ministry of Education, Hubei University of Technology, Wuhan 430068, China; Innovation Demonstration Base of Ecological Environment Geotechnical and Ecological Restoration of Rivers and Lakes, School of Civil and Environmental Engineering, Hubei University of Technology, Wuhan 430068, China. Electronic address:
Cyanobacterial blooms are prevalent globally and present a significant threat to water security. Titanium salt coagulants have garnered considerable attention due to their superior coagulation properties and the absence of metal residue risks. This paper explored the influencing factors in the coagulation process of titanium xerogel coagulant (TXC), the alterations in cell activity during floc storage, and the release of cyanobacterial organic matters, thereby determining the application scope of TXC for cyanobacterial water treatment.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Air Force Research Laboratory, 711th Human Performance Wing, Wright-Patterson Air Force Base, Wright-Patterson AFB, Ohio 45433, United States.
Peptides, due to their diverse and controllable properties, are used as both liquid and gas phase recognition elements for both biological and chemical targets. While it is well understood how binding of a peptide to a biomolecule can be converted into a sensing event, there is not the same mechanistic level of understanding with regard to how peptides modulate the selectivity of semiconductor/conductor-based gas sensors. Notably, a rational, mechanistic study has not yet been performed to correlate peptide properties to the sensor response for volatile organic compounds (VOCs) as a function of chemical properties.
View Article and Find Full Text PDFJ Phys Chem B
December 2024
Centre for Biomedical Engineering, Indian Institute of Technology, Delhi 110016, India.
Dexter energy transfer (DET) of triplet electronic states is used to direct energy in photovoltaics, quench reactive singlet oxygen species in biological systems, and generate them in photodynamic therapy. However, the extent to which repeated DET between aromatic residues can lead to triplet energy migration in proteins has not been investigated. Here, we computationally describe DET rates in microtubules, actin filaments and the intermediate filament, vimentin.
View Article and Find Full Text PDFApoptosis
December 2024
Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, 215000, Jiangsu, China.
Ferroptosis is a novel type of programmed cell death dependent on iron and is characterized by the accumulation of lipid peroxides, which is involved in acute lung injury (ALI). Brazilin, an organic compound known for its potent antioxidant and anti-inflammatory properties, has not been thoroughly studied for its potential impact on lipopolysaccharide (LPS)-induced ALI. Here, we found that pretreatment of brazilin mitigated LPS-induced lung injury and inflammation by inhibiting mitochondrial oxidative stress and ferroptosis, both in vivo and in vitro.
View Article and Find Full Text PDFHeliyon
December 2024
Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, Via Amendola 165/A, 70126, Bari, Italy.
The excessive and/or improper use of plant protection products (PPPs) can generate alarming levels of residues in the environment, compromising both soil fertility and food safety. Various organic wastes released in large amounts by agro-industrial activity are currently studied and applied as bioadsorbents for water and soil decontamination. This study explored the capacity of untreated orange peel, olive stones and pistachio shells to adsorb the PPPs oxyfluorfen (OXY), metribuzin (MET) and imidacloprid (IMI), and the xenoestrogen bisphenol A (BPA) from water.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!