Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Amid collective-variable (CV)-based importance-sampling algorithms, a hybrid of the extended adaptive biasing force and the well-tempered metadynamics algorithms (WTM-eABF) has proven particularly cost-effective for exploring the rugged free-energy landscapes that underlie biological processes. However, as an inherently CV-based algorithm, this hybrid scheme does not explicitly accelerate sampling in the space orthogonal to the chosen CVs, thereby limiting its efficiency and accuracy, most notably in those cases where the slow degrees of freedom of the process at hand are not accounted for in the model transition coordinate. Here, inspired by Gaussian-accelerated molecular dynamics (GaMD), we introduce the same CV-independent harmonic boost potential into WTM-eABF, yielding a hybrid algorithm coined GaWTM-eABF. This algorithm leans on WTM-eABF to explore the transition coordinate with a GaMD-mollified potential and recovers the unbiased free-energy landscape through thermodynamic integration followed by proper reweighting. As illustrated in our numerical tests, GaWTM-eABF effectively overcomes the free-energy barriers in orthogonal space and correctly recovers the unbiased potential of mean force (PMF). Furthermore, applying both GaWTM-eABF and WTM-eABF to two biologically relevant processes, namely, the reversible folding of (i) deca-alanine and (ii) chignolin, our results indicate that GaWTM-eABF reduces the uncertainty in the PMF calculation and converges appreciably faster than WTM-eABF. Obviating the need of multiple-copy strategies, GaWTM-eABF is a robust, computationally efficient algorithm to surmount the free-energy barriers in orthogonal space and maps with utmost fidelity the free-energy landscape along selections of CVs. Moreover, our strategy that combines WTM-eABF with GaMD can be easily extended to other biasing-force algorithms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jctc.1c00103 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!