A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Phase Saturation Control on Mixing-Driven Reactions in 3D Porous Media. | LitMetric

Transported chemical reactions in unsaturated porous media are relevant to environmental and industrial applications. Continuum scale models are based on equivalent parameters derived from analogy with saturated conditions and cannot appropriately account for incomplete mixing. It is also unclear how the third dimension controls mixing and reactions. We obtain three-dimensional (3D) images by magnetic resonance imaging using an immiscible nonwetting liquid as a second phase and a fast irreversible bimolecular reaction. We study the impact of phase saturation on the dynamics of mixing and the reaction front. We quantify the temporally resolved effective reaction rate and describe it using the lamellar theory of mixing, which explains faster than Fickian () rate of product formation by accounting for the deformation of the mixing interface between the two reacting fluids. For a given Péclet, although stretching and folding of the reactive front enhance as saturation decreases, enhancing the product formation, the product formation is larger as saturation increases. After breakthrough, the extinction of the reaction takes longer as saturation decreases because of the larger nonmixed volume behind the front. These results are the basis for a general model to better predict reactive transport in unsaturated porous media not achievable by the current continuum paradigm.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.1c01288DOI Listing

Publication Analysis

Top Keywords

porous media
12
product formation
12
phase saturation
8
unsaturated porous
8
saturation decreases
8
mixing
5
saturation control
4
control mixing-driven
4
mixing-driven reactions
4
reactions porous
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!