Thorough characterization and fundamental understanding of cellulose fibers can help us develop new, sustainable material streams and advanced functional materials. As an emerging nanomaterial, cellulose nanofibrils (CNFs) have high specific surface area and good mechanical properties; however, handling and processing challenges have limited their widespread use. This work reports an in-depth characterization of self-fibrillating cellulose fibers (SFFs) and their use in smart, responsive filters capable of regulating flow and retaining nanoscale particles. By combining direct and indirect characterization methods with polyelectrolyte swelling theories, it was shown that introduction of charges and decreased supramolecular order in the fiber wall were responsible for the exceptional swelling and nanofibrillation of SFFs. Different microscopy techniques were used to visualize the swelling of SFFs before, during, and after nanofibrillation. Through filtration and pH adjustment, smart filters prepared nanofibrillation showed an ability to regulate the flow rate through the filter and a capacity of retaining 95% of 300 nm (diameter) silica nanoparticles. This exceptionally rapid and efficient approach for making smart filters directly addresses the challenges associated with dewatering of CNFs and bridges the gap between science and technology, making the widespread use of CNFs in high-performance materials a not-so-distant reality.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8289225 | PMC |
http://dx.doi.org/10.1021/acsami.1c06452 | DOI Listing |
Int J Biol Macromol
January 2025
Chemical and Petroleum Engineering Department, College of Engineering, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates. Electronic address:
In this study, the role of a transition metal complex in improving hydrolysis efficiency during nanocellulose production was analysed. Cellulose nanocrystals (CNCs) were extracted from date seeds by incorporating a copper metal complex during HCl hydrolysis. In contrast to traditional HCl hydrolysis at moderate conditions, which yielded only microcrystalline cellulose (MCC), this approach resulted in the extraction of CNCs with a 10 % improved yield compared to MCC.
View Article and Find Full Text PDFSci Rep
January 2025
Research Center of Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran.
Cigarette filter microplastics are composed of cellulose acetate that does not undergo biological or photo-degradation. These microplastics are readily dispersed and can be found abundantly in water, soil, and air. These fibers possess high absorption capabilities, allowing them to collect and retain pollutants such as toxic elements.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Energy and Environment, City University of Hong Kong, Kowloon 999077, Hong Kong.
ACS Sustain Resour Manag
December 2024
FSCN Research Center, Organic Chemistry, Mid Sweden University, Holmgatan 10, 851 70 Sundsvall, Sweden.
There is a growing demand for the utilization of sustainable materials, such as cellulose-based alternatives, over fossil-based materials. However, the inherent drawbacks of cellulosic materials, such as extremely low wet strength and resistance to moisture, need significant improvements. Moreover, several of the commercially available wet-strength chemicals and hydrophobic agents for cellulosic material treatment are toxic or fossil-based (e.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, Zhejiang Province, PR China. Electronic address:
As the substrate, tobacco waste extract (TWE) can produce bacterial cellulose (BC), a biobased material. However, nicotine inhibits BC production (adding 0.8 g/L nicotine to the HS medium had a negative effect on BC synthesis) and needs to be removed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!