In urban areas, untreated stormwater runoff can pollute downstream surface waters. To intercept and treat runoff, low-impact or "green infrastructure" approaches such as using biofilters are adopted. Yet, actual biofilter pollutant removal is poorly understood; removal is often studied in laboratory columns, with variable removal of viable and culturable microbial cell numbers including pathogens. Here, to assess bacterial pollutant removal in full-scale planted biofilters, stormwater was applied, unspiked or spiked with untreated sewage, in simulated storm events under transient flow conditions, during which biofilter influents versus effluents were compared. Based on microbial biomass, sequences of bacterial community genes encoding 16S rRNA, and gene copies of the human fecal marker HF183 and of the spp. marker Entero1A, removal of bacterial pollutants in biofilters was limited. Dominant bacterial taxa were similar for influent versus effluent aqueous samples within each inflow treatment of either spiked or unspiked stormwater. Bacterial pollutants in soil were gradually washed out, albeit incompletely, during simulated storm flushing events. In post-storm biofilter soil cores, retained influent bacteria were concentrated in the top layers (0-10 cm), indicating that the removal of bacterial pollutants was spatially limited to surface soils. To the extent that plant-associated processes are responsible for this spatial pattern, treatment performance might be enhanced by biofilter designs that maximize influent contact with the rhizosphere.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.1c00510DOI Listing

Publication Analysis

Top Keywords

bacterial pollutants
12
removal full-scale
8
pollutant removal
8
simulated storm
8
removal bacterial
8
removal
7
bacterial
6
limited bacterial
4
bacterial removal
4
stormwater
4

Similar Publications

Effects of UVC doses on the removal of antimicrobial resistance elements from secondary treated sewage.

Environ Sci Pollut Res Int

January 2025

Programa de Pós-Graduação Em Saneamento, Meio Ambiente E Recursos Hídricos, Departamento de Engenharia Sanitária E Ambiental, Universidade Federal de Minas Gerais, Av. Antonio Carlos 6627, Belo Horizonte, MG, 31270-901, Brazil.

Wastewater treatment plants (WWTPs) currently face major challenges toward the removal of microcontaminants and/or microbial matrices and consequently play an important role in the potential dissemination of biological resistance in freshwater. The ultraviolet (UV) system is a tertiary treatment strategy increasingly applied worldwide, although many studies have shown that disinfected effluent can still contain antibiotic-resistant bacteria and resistance genes. Therefore, to better understand the effects of UV radiation doses on the removal of all resistance elements (antibiotics, antibiotic-resistant bacteria, and antibiotic resistance genes), the present study was designed using a pilot-scale photoreactor.

View Article and Find Full Text PDF

Antibiotic residues have become serious health concerns due to the development of antibiotic-resistant bacteria. The treatment of antibiotic pollutants in wastewater is necessary for reducing the issue of antibiotic resistance. In this work, the metal oxide photocatalyst titanium dioxide (TiO) was evaluated for the removal of the tetracycline antibiotic (TC-A) and the deactivation of bacteria (E-B) from wastewater.

View Article and Find Full Text PDF

Impact of pollution on microbiological dynamics in the pistil stigmas of Orobanche lutea flowers (Orobanchaceae).

Sci Rep

January 2025

Center for Research and Conservation of Biodiversity, Department of Environmental Biology, Institute of Biology, Jan Kochanowski University, Uniwersytecka 7, 25-406, Kielce, Poland.

Our understanding of the basic relationships of microbiota associated with flowers is still quite limited, especially regarding parasitic plant species. The transient nature of flower parts such as pistil stigmas provides a unique opportunity for temporal investigations. This is the first report of the analysis of bacterial and fungal communities associated with the pistil stigmas of the lucerne parasite, Orobanche lutea.

View Article and Find Full Text PDF

Versatile applications of cobalt and copper complexes of biopolymeric Schiff base ligands derived from chitosan.

Int J Biol Macromol

January 2025

Catalytic Applications Laboratory, Department of Chemistry, School of Basic Sciences, Faculty of Science, Manipal University Jaipur, Dehmi Kalan, Jaipur 303007, Rajasthan, India. Electronic address:

In the present study, biopolymeric Schiff base (SB) ligands were synthesized from chitosan and isatin. Consequently, their earth abundant transition metal complexes of cobalt and copper were synthesized. All compounds were extensively characterized using FTIR and UV spectroscopy, thermo-gravimetric (TG) analysis, X-ray powder diffraction (XRD) and FESEM (field emission scanning electron microscopy).

View Article and Find Full Text PDF

Environmental and population influences on mummichog () gut microbiomes.

Microbiol Spectr

January 2025

Marine Chemistry & Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA.

Unlabelled: The mummichog, , an abundant estuarine fish broadly distributed along the eastern coast of North America, has repeatedly evolved tolerance to otherwise lethal levels of aromatic hydrocarbon exposure. This tolerance is linked to reduced activation of the aryl hydrocarbon receptor (AHR) signaling pathway. In other animals, the AHR has been shown to influence the gastrointestinal-associated microbial community, particularly when activated by the model toxic pollutant 3,3',4,4',5-pentachlorobiphenyl (PCB-126) and other dioxin-like compounds.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!