We aimed to elucidate the frequency of polymorphic genotypes and alleles of patatin-like phospholipase domain containing 3 rs738409 polymorphism and its possible associations with non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis in a cohort from Turkey.We enrolled 200 patients diagnosed with NAFLD and genotyped for rs738409 I148M polymorphism by real-time polymerase chain reaction, particularly by melting curve analysis. SPSS analysis software was used for statistical significance. Continuous variable values were expressed as mean ± standard deviation. Significant statistical level was chosen as p  = 0.05.Our results demonstrate in a cohort from Turkey that rs738409 C > G polymorphism (I148M) of patatin-like phospholipase domain containing 3 gene is significantly able to affect individuals to have NAFLD in unadjusted regression model.Consistent with the previous studies in other populations, our study group showed a significantly higher risk of having NAFLD in unadjusted regression model but not in the adjusted model indicating that non-genetic factors such as age and sex may be responsible for the association. However, independent studies need to validate our findings with a larger group of NAFLD patients, as well as in different ethnic cohorts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8133255PMC
http://dx.doi.org/10.1097/MD.0000000000025893DOI Listing

Publication Analysis

Top Keywords

patatin-like phospholipase
12
phospholipase domain
12
rs738409 i148m
8
i148m polymorphism
8
domain gene
8
non-alcoholic fatty
8
fatty liver
8
liver disease
8
nafld unadjusted
8
unadjusted regression
8

Similar Publications

Supernatants from Newly Isolated P4 Ameliorate Adipocyte Metabolism in Differentiated 3T3-L1 Cells.

Biomedicines

December 2024

Department of Biochemistry, Microbiology and Physics, Faculty of Agriculture, Trakia University, 6000 Stara Zagora, Bulgaria.

() strains and their postbiotics show potential for managing metabolic disorders such as diabetes and obesity. Two newly isolated strains, M2.1 and P4, were yielded from anthills in Sinite Kamani National Park, Bulgaria.

View Article and Find Full Text PDF

Background/objectives: Low fasting blood lysosomal acid lipase (LAL) activity is associated with the pathogenesis of metabolic hepatic steatosis. We measured LAL activity in blood and plasma before and after an oral fat tolerance test (OFTT) in patients with metabolic-dysfunction-associated steatotic liver disease (MASLD).

Methods: Twenty-six controls and seventeen patients with MASLD but without diabetes were genotyped for the patatin-like phospholipase 3 (PNPLA3) rs738409 variant by RT-PCR and subjected to an OFTT, measuring LAL activity in blood and plasma with a fluorimetric method.

View Article and Find Full Text PDF

Background And Aim: Identifying the factors contributing to the progression of metabolic dysfunction-associated steatotic liver disease (MASLD), a lifestyle-related disease, is crucial for preventing future liver-related deaths. This study aimed to epidemiologically investigate factors, including single-nucleotide polymorphisms (SNPs) associated with alanine aminotransferase (ALT) levels >30 U/L and potential risk factors for liver fibrosis, in a general population cohort of patients with MASLD.

Methods: Among 1059 participants in the health checkup project, 228 who were diagnosed with MASLD were analyzed.

View Article and Find Full Text PDF
Article Synopsis
  • Patatin-like phospholipase-A (pPLA) enzymes are found in both animals and plants, with plant pPLAs linked to the storage protein patatin from potatoes, but their functions in plants are not well understood compared to those in animals.* -
  • Recent research has begun to unravel the roles of pPLAs in plants, focusing on their structural features and biochemical activities, particularly in lipid metabolism and accumulation of materials like lignin and cellulose.* -
  • The review highlights the significance of pPLAs in important plant processes, including stress responses, interactions with pathogens, and overall plant development, which could aid in improving crop biotechnology.*
View Article and Find Full Text PDF

The intricate balance between lipolysis and lipophagy in cellular lipid homeostasis has fascinated researchers for years. A growing body of evidence highlights the critical roles of PNPLA2/ATGL (patatin like phospholipase domain containing 2) in both lipolysis and lipophagy. Here, we discuss our recent study, which revealed that PNPLA2 must be S-acylated on Cys15 for its robust catalytic activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!