Highly conductive, conformable and gel-free electrodes are desirable in human electrophysiology. Besides, intimately coupling with human skin, wearable strain sensors can detect numerous physiological signals, such as wrist pulse and breath. In this study, a multilayer graphene nanosheet film (MGNF) with high conductivity was prepared by the Marangoni self-assembly for using in tattoo dry electrodes (TDEs) and in a graphene tattoo strain sensor (GTSS). Compared to commercial Ag/AgCl gel electrodes, TDEs have lower skin-electrode contact impedance and could detect human electrocardiogram for 24-hour wearing more accurately as well as electromyogram. Through designing a slim serpentine ribbon structure, a resistance-type GTSS, without deterioration even after 2000 cycles, is well demonstrated for human wrist pulse and breath sensing. With the advantages of high conductivity and conformability, MGNF provides support to fabricate low-cost, customizable, and high-performance electronic tattoos for human electrophysiology and strain sensing.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0nr08032bDOI Listing

Publication Analysis

Top Keywords

human electrophysiology
12
highly conductive
8
multilayer graphene
8
graphene nanosheet
8
nanosheet film
8
electronic tattoos
8
electrophysiology strain
8
strain sensing
8
wrist pulse
8
pulse breath
8

Similar Publications

Atrial fibrillation (AF) is common and its treatment is complex. The new European guidelines emphasize a patient-centered approach, considering the risk factors that contribute to AF and their management in primary and secondary prevention. Recent advances in electrophysiology include the development of new ablation techniques and the implantation of a leadless bicameral pacemaker.

View Article and Find Full Text PDF

Correlation coefficients play a pivotal role in quantifying linear relationships between random variables. Yet, their application to time series data is very challenging due to temporal dependencies. This paper introduces a novel approach to estimate the statistical significance of correlation coefficients in time series data, addressing the limitations of traditional methods based on the concept of effective degrees of freedom (or effective sample size, ESS).

View Article and Find Full Text PDF

Purpose Of The Review: This review examines the role of vascular access and closure management in cardiac electrophysiology (EP) procedures, emphasising their impact on patient outcomes and safety. It synthesises current evidence and highlights advancements, challenges, and opportunities in this critical area of EP practice.

Recent Findings: Ultrasound-guided vascular access has significantly reduced complications and improved success rates compared to traditional methods.

View Article and Find Full Text PDF

Maximizing the translational potential of neurophysiology in amyotrophic lateral sclerosis: a study on compound muscle action potentials.

Amyotroph Lateral Scler Frontotemporal Degener

January 2025

Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), The University of Sheffield, Sheffield, UK and.

Mouse models of amyotrophic lateral sclerosis (ALS) enable testing of novel therapeutic interventions. However, treatments that have extended survival in mice have often failed to translate into human benefit in clinical trials. Compound muscle action potentials (CMAPs) are a simple neurophysiological test that measures the summation of muscle fiber depolarization in response to maximal stimulation of the innervating nerve.

View Article and Find Full Text PDF

Impacts of hnRNP A1 Splicing Inhibition on the Brain Remyelination Proteome.

J Neurochem

January 2025

Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil.

Oligodendrocytes, the myelinating cells in the central nervous system, are implicated in several neurological disorders marked by dysfunctional RNA-binding proteins (RBPs). The present study aimed at investigating the role of hnRNP A1 in the proteome of the corpus callosum, prefrontal cortex, and hippocampus of a murine cuprizone-induced demyelination model. Right after the cuprizone insult, we administered an hnRNP A1 splicing activity inhibitor and analyzed its impact on brain remyelination by nanoESI-LC-MS/MS label-free proteomic analysis to assess the biological processes affected in these brain regions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!