LncRNA LINC00525 suppresses p21 expression via mRNA decay and triplex-mediated changes in chromatin structure in lung adenocarcinoma.

Cancer Commun (Lond)

Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, the Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, Jiangsu, 210009, P. R. China.

Published: July 2021

Background: Emerging evidence suggests that long noncoding RNAs (lncRNAs) play crucial roles in various cancers. In the present study, we aim to investigate the function and molecular mechanism of an up-regulated and survival-associated lncRNA, LINC00525, in lung adenocarcinoma (LUAD).

Methods: The expression level of LINC00525 in tissues was determined by quantitative reverse transcription polymerase chain reaction (RT-qPCR) and in situ hybridization (ISH). The functional role of LINC00525 in LUAD was investigated using gain-and loss-of-function approaches, both in vivo and in vitro. RNA pull-down, RNA immunoprecipitation (RIP), chromatin immunoprecipitation (ChIP), triplex-capture assay, dual-luciferase assay, gene expression microarray, and bioinformatics analysis were used to investigate the potential underlying mechanisms involved.

Results: LINC00525 is highly expressed in LUAD cells and tissues. Survival analysis indicated that upregulation of LINC00525 was associated with poor prognosis in patients with LUAD patients. Knockdown of LINC00525 inhibited cell proliferation and cell cycle progression in vitro. In xenograft models, LINC00525 knockdown suppressed tumor growth and tumorigenesis of tumor-bearing mice. Mechanistically, LINC00525 epigenetically suppressed p21 transcription by guiding Enhancer Of Zeste 2 Polycomb Repressive Complex 2 Subunit (EZH2) to the p21 promoter through an formation of RNA-DNA triplex with the p21 promoter, leading to increased trimethylation of lysine 27 on histone 3 (H3K27me3) of the p21 promoter. In addition, LINC00525 repressed p21 expression post-transcriptionally by enhancing p21 mRNA decay. LINC00525 promoted p21 mRNA decay by competitively binding to RNA Binding Motif Single Stranded Interacting Protein 2 (RBMS2).

Conclusion: Our findings demonstrate that LINC00525 promotes the progression of LUAD by reducing the transcription and stability of p21 mRNA in concert with EZH2 and RBMS2, thus suggesting that LINC00525 may be a potential therapeutic target for clinical intervention in LUAD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8286138PMC
http://dx.doi.org/10.1002/cac2.12181DOI Listing

Publication Analysis

Top Keywords

mrna decay
12
linc00525
12
p21 promoter
12
p21 mrna
12
p21
9
lncrna linc00525
8
p21 expression
8
lung adenocarcinoma
8
luad
5
linc00525 suppresses
4

Similar Publications

Exploration of molecular markers is an ongoing focus in the field of bladder cancer research. Based on data from public databases, was identified as upregulated in bladder urothelial carcinoma (BLCA); however, its exact function and regulatory mechanism in this context remain unclear. To investigate the clinical implications of , we examined its levels in 90 BLCA and adjoining normal tissue samples.

View Article and Find Full Text PDF

Numerous diseases have been connected to protein arginine methylations mediated by protein arginine methyltransferase 5 (PRMT5). Clinical investigations of the PRMT5-specific inhibitor GSK3326595 are currently being conducted, and the results are promising for preventing cancers. However, the detailed mechanism of PRMT5 promoting colorectal cancer (CRC) malignant progression remains unclear.

View Article and Find Full Text PDF

Galactose oxidase oxidation and glycosidase digestion for glycoRNA analysis.

Anal Methods

January 2025

Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China.

Ribonucleic acid (RNA), essential for protein production and immune function, undergoes glycosylation, a process that attaches glycans to RNA, generating unique glycoRNAs. These glycan-coated RNA molecules regulate immune responses and may be related to immune disorders. However, studying them is challenging due to RNA's fragility.

View Article and Find Full Text PDF

Following transcript release during intrinsic termination, Escherichia coli RNA polymerase (RNAP) often remains associated with DNA in a post-termination complex (PTC). RNAPs in PTCs are removed from the DNA by the SWI2/SNF2 adenosine triphosphatase (ATPase) RapA. Here we determined PTC structures on negatively supercoiled DNA and with RapA engaged to dislodge the PTC.

View Article and Find Full Text PDF

Characteristics of gut microbiota profiles in Asian elephants (Elephas maximus) with gastrointestinal disorders.

Sci Rep

January 2025

Center of Elephant and Wildlife Health, Animal Hospital, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, 50100, Thailand.

Colic and diarrhea are common gastrointestinal (GI) disorders in captive Asian elephants, which can severely impact health and lead to mortality. Gut dysbiosis, indicated by alterations in gut microbiome composition, can be observed in individuals with GI disorders. However, changes in gut microbial profiles of elephants with GI disorders have never been investigated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!