Molten salt electrolysis is a vital technique to produce high-purity lanthanide metals and alloys. However, the coordination environments of lanthanides in molten salts, which heavily affect the related redox potential and electrochemical properties, have not been well elucidated. Here, the competitive coordination of chloride and fluoride anions towards lanthanide cations (La and Nd ) is explored in molten LiCl-KCl-LiF-LnCl salts using electrochemical, spectroscopic, and computational approaches. Electrochemical analyses show that significant negative shifts in the reduction potential of Ln occur when F concentration increases, indicating that the F anions interact with Ln via substituting the coordinated Cl anions, and confirm [LnCl F ] (y =3) complexes are prevailing in molten salts. Spectroscopic and computational results on solution structures further reveal the competition between Cl and F anions, which leads to the formation of four distinct Ln(III) species: [LnCl ] , [LnCl F] , [LnCl F ] and [LnCl F ] . Among them, the seven-coordinated [LnCl F ] complex possesses a low-symmetry structure evidenced by the pattern change of Raman spectra. After comparing the polarizing power (Z/r) among different metal cations, it was concluded that Ln-F interaction is weaker than that between transition metal and F ions.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.202101505DOI Listing

Publication Analysis

Top Keywords

molten salts
12
[lncl [lncl
12
competitive coordination
8
coordination chloride
8
chloride fluoride
8
fluoride anions
8
lanthanide cations
8
spectroscopic computational
8
[lncl
6
anions
5

Similar Publications

Study on Microscopic Properties of Molten NaF-AlF-CaF/LiF/KF Using First-Principles Molecular Dynamics.

J Phys Chem B

January 2025

Key Laboratory for Ecological Metallurgy of Multimetallic Mineral (Ministry of Education), School of Metallurgy, Northeastern University, Shenyang, Liaoning 110819, China.

This study employs first-principles molecular dynamics (FPMD) simulations combined with the Voronoi tessellation method to explore the microstructure, transport properties, electronic properties, and Raman spectra of the NaF-AlF-CaF/LiF/KF systems with varying cryolite ratios, additive types, and concentrations. The results indicate that Na, Ca, Li, and K exist in a free state in the molten salts, while Al forms complex ion groups in the form of [AlF] with F, and free F also exists in the molten salts. In the NaF-AlF-CaF system, the average Al-F distance is slightly shorter than that in the other two systems, while the Al-F coordination number is higher in NaF-AlF-LiF.

View Article and Find Full Text PDF

The electrochemical conversion of CO into high value-added carbon materials by molten salt electrolysis offers a promising solution for reducing carbon dioxide emissions. This study focuses on investigating the influence of molten salt composition on the structure of CO direct electroreduction carbon products in chloride molten salt systems. Using CaO as a CO absorber, the adsorption principle of CO in LiCl-CaCl, LiCl-CaCl-NaCl and LiCl-CaCl-KCl molten salts was discussed, and the reasons for the different morphologies and structures of carbon products were analyzed, and it was found that the electrolytic efficiency of the whole process exceeded 85%.

View Article and Find Full Text PDF

We developed a systematic polarizable force field for molten trivalent rare-earth chlorides, from lanthanum to europium, based on first-principle calculations. The proposed model was employed to investigate the local structure and physicochemical properties of pure molten salts and their mixtures with sodium chloride. We computed densities, heat capacities, surface tensions, viscosities, and diffusion coefficients and disclosed their evolution along the lanthanide series, filling the gaps for poorly studied elements, such as promethium and europium.

View Article and Find Full Text PDF

Ionic conductive hydrogels have attracted great attention due to their good flexibility and conductivity in flexible electronic devices. However, because of the icing and water loss problems, the compatibility issue between the mechanical properties and conductivity of hydrogel electrolytes over a wide temperature range remains extremely challenging to achieve. Although, antifreezing/water-retaining additives could alleviate these problems, the reduced performance and complex preparation methods seriously limit their development.

View Article and Find Full Text PDF

Direct regeneration of spent lithium-ion batteries offers economic benefits and a reduced CO2 footprint. Surface prelithiation, particularly through the molten salt method, is critical in enhancing spent cathode repair during high-temperature annealing. However, the sluggish Li+ transport kinetics, which relies on thermally driven processes in the traditional molten salt methods, limit the prelithiation efficiency and regeneration of spent cathodes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!