Socioeconomic disadvantage has been linked to increased stress exposure in children and adults. Exposure to stress in childhood has been associated with deleterious effects on cognitive development and well-being throughout the lifespan. Further, exposure to stress has been associated with differences in brain development in children, both in cortical and subcortical gray matter. However, less is known about the associations among socioeconomic disadvantage, stress, and children's white matter development. In this study, we investigated whether socioeconomic disparities would be associated with differences in white matter microstructure in the cingulum bundle, as has been previously reported. We additionally investigated whether any such differences could be explained by differences in stress exposure and/or physiological stress levels. White matter tracts were measured via diffusion tensor imaging in 58 children aged 5-9 years. Results indicated that greater exposure to stressful life events was associated with higher child hair cortisol concentrations. Further, physiological stress, as indexed by hair cortisol concentrations, were associated with higher fractional anisotropy in the cingulum bundle. These results have implications for better understanding how perceived and physiological stress may alter neural development during childhood.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9153946PMC
http://dx.doi.org/10.1002/dev.22147DOI Listing

Publication Analysis

Top Keywords

white matter
16
hair cortisol
12
physiological stress
12
stress
9
matter microstructure
8
socioeconomic disadvantage
8
stress exposure
8
exposure stress
8
associated differences
8
cingulum bundle
8

Similar Publications

Pregnancy is a period of profound biological transformation. However, we know remarkably little about pregnancy-related brain changes. To address this gap, we chart longitudinal changes in brain structure during pregnancy and explore potential mechanisms driving these changes.

View Article and Find Full Text PDF

Sodium MRI can measure sodium concentrations in people with multiple sclerosis, but the extent to which these alterations reflect metabolic dysfunction in the absence of tissue damage or neuroaxonal loss remains uncertain. Increases in total sodium concentration and extracellular sodium concentration are believed to be indicative of tissue disruption and extracellular space expansion. Conversely, increase in intracellular sodium concentration may represent early and transient responses to neuronal insult, preceding overt tissue damage.

View Article and Find Full Text PDF

Increasing evidence suggests the involvement of metabolic alterations in neurological disorders, including Alzheimer's disease (AD), and highlights the significance of the peripheral metabolome, influenced by genetic factors and modifiable environmental exposures, for brain health. In this study, we examined 1,387 metabolites in plasma samples from 1,082 dementia-free middle-aged participants of the population-based Rotterdam Study. We assessed the relation of metabolites with general cognition (G-factor) and magnetic resonance imaging (MRI) markers using linear regression and estimated the variance of these metabolites explained by genes, gut microbiome, lifestyle factors, common clinical comorbidities, and medication using gradient boosting decision tree analysis.

View Article and Find Full Text PDF

Background: Perivascular Spaces (PVS) are a marker of cerebral small vessel disease (CSVD) that are visible on brain imaging. Larger PVS has been associated with poor quality of life and cognitive impairment post-stroke. However, the association between PVS and post-stroke sensorimotor outcomes has not been investigated.

View Article and Find Full Text PDF

Deep Learning Analysis of White Matter Hyperintensity and its Association with Comprehensive Vascular Factors in Two Large General Populations.

J Imaging Inform Med

January 2025

Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-Ro 43-Gil, Seoul, 05505, Republic of Korea.

Although the relationships between basic clinical parameters and white matter hyperintensity (WMH) have been studied, the associations between vascular factors and WMH volume in general populations remain unclear. We investigated the associations between clinical parameters including comprehensive vascular factors and WMH in two large general populations. This retrospective, cross-sectional study involved two populations: individuals who underwent general health examinations at the Asan Medical Center (AMC) and participants from a regional cohort, the Korean Genome and Epidemiology Study (KoGES).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!