Alternative splicing occurs in all eukaryotic organisms. Since the first description of multiexon genes and the splicing machinery, the field has expanded rapidly, especially in animals and yeast. However, our knowledge about splicing in plants is still quite fragmented. Though eukaryotes show some similarity in the composition and dynamics of the splicing machinery, observations of unique plant traits are only starting to emerge. For instance, plant alternative splicing is closely linked to their ability to perceive various environmental stimuli. Due to their sessile lifestyle, temperature is a central source of information allowing plants to adjust their development to match current growth conditions. Hence, seasonal temperature fluctuations and day-night cycles can strongly influence plant morphology across developmental stages. Here we discuss the available data about temperature-dependent alternative splicing in plants. Given its fragmented state it is not always possible to fit specific observations into a coherent picture, yet it is sufficient to estimate the complexity of this field and the need of further research. Better understanding of alternative splicing as a part of plant temperature response and adaptation may also prove to be a powerful tool for both, fundamental and applied sciences.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jxb/erab234DOI Listing

Publication Analysis

Top Keywords

alternative splicing
20
splicing
8
splicing plant
8
plant temperature
8
temperature response
8
splicing machinery
8
splicing plants
8
plants fragmented
8
alternative
5
plant
5

Similar Publications

Cellular senescence induced by down-regulation of correlates with exon skipping of mitochondrial-related gene .

Life Med

April 2024

Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai 200438, China.

As the most prevalent type of alternative splicing in animal cells, exon skipping plays an important role in expanding the diversity of transcriptome and proteome, thereby participating in the regulation of diverse physiological and pathological processes such as development, aging, and cancer. Cellular senescence serving as an anti-cancer mechanism could also contribute to individual aging. Although the dynamic changes of exon skipping during cellular senescence were revealed, its biological consequence and upstream regulator remain poorly understood.

View Article and Find Full Text PDF

Alu-Sc-mediated exonization generated a mitochondrial LKB1 gene variant found only in higher order primates.

Sci Rep

January 2025

Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #04-06 Immunos, Singapore, 138648, Singapore.

The tumor suppressor LKB1/STK11 plays important roles in regulating cellular metabolism and stress responses and its mutations are associated with various cancers. We recently identified a novel exon 1b within intron 1 of human LKB1/STK11, which generates an alternatively spliced, mitochondria-targeting LKB1 isoform important for regulating mitochondrial oxidative stress. Here we examined the formation of this novel exon 1b and uncovered its relatively late emergence during evolution.

View Article and Find Full Text PDF

Alternative splicing impacts most multi-exonic human genes. Inaccuracies during this process may have an important role in ageing and disease. Here, we investigate splicing accuracy using RNA-sequencing data from >14k control samples and 40 human body sites, focusing on split reads partially mapping to known transcripts in annotation.

View Article and Find Full Text PDF

Unlabelled: To overcome the paucity of known tumor-specific surface antigens in pediatric high-grade glioma (pHGG), we contrasted splicing patterns in pHGGs and normal brain samples. Among alternative splicing events affecting extracellular protein domains, the most pervasive alteration was the skipping of ≤30 nucleotide-long microexons. Several of these skipped microexons mapped to L1-IgCAM family members, such as .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!