Local Structures of Soft Carbon and Electrochemical Performance of Potassium-Ion Batteries.

ACS Appl Mater Interfaces

State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China.

Published: June 2021

Due to climate variation and global warming, utilization of renewable energy becomes increasingly imperative. Rechargeable potassium-ion batteries (PIBs) have lately attracted much attention due to their earth-abundance and cost-effectiveness. Because soft carbon materials are cheap, abundant, and safe, extensive feasible research studies have indicated that they could become promising anode materials for PIBs. In spite of gaining achievements, fundamental questions regarding effects of the basic structure unit inside soft carbon on potassium storage potential have not been sufficiently addressed yet. Here, a series of soft carbon pyrolyzed from 900 to 2900 °C were systematically and quantitatively characterized by combining Raman spectroscopy, near-edge X-ray absorption fine structure (NEXAFS) spectroscopy, X-ray pair distribution function analysis, and advanced evaluation of wide-angle X-ray scattering data. All these characterizations reveal structural details of soft carbon with increasing pyrolysis temperature. Our results show that the potassium storage behavior, especially the potential plateau is closely correlated to non-uniformity in interlayer distance and defect concentration in soft carbon, which is further confirmed by reverse Monte Carlo (RMC) modeling and density functional theory calculation. On the basis of these results, optimizing strategies are discussed to design an advanced soft carbon anode. This work provides significant insights into the structure engineering of soft carbon for high-performance rechargeable PIBs.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.1c06303DOI Listing

Publication Analysis

Top Keywords

soft carbon
32
soft
8
carbon
8
potassium-ion batteries
8
potassium storage
8
local structures
4
structures soft
4
carbon electrochemical
4
electrochemical performance
4
performance potassium-ion
4

Similar Publications

Injectable, Biodegradable and Photothermal Hydrogel with Quorum Sensing Inhibitory Effects for Subcutaneous Fungal Infection Treatment.

ACS Appl Mater Interfaces

January 2025

Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.

Owing to the high invasion depth and easy formation of biofilms, the treatment of subcutaneous fungal infection is intractable and challenging. Herein, we report an injectable and biodegradable hydrogel with bactericidal, quorum sensing inhibition and antioxidant activities for the in situ treatment of subcutaneous fungal infection. The hydrogel (BEPE) was constructed by irradiating mixed bovine serum albumin (BSA), ε-polylysine and epigallocatechin gallate (EGCG)-loaded mesoporous polydopamine (PDA) under near-infrared (NIR) light.

View Article and Find Full Text PDF

Combining Hard Shell with Soft Core to Enhance Enzyme Activity and Resist External Disturbances.

Adv Sci (Weinh)

January 2025

Department of Cardiology, The First People's Hospital of Wenling, Wenling Hospital of Wenzhou Medical University, Wenling, Zhejiang, 317500, China.

Immobilizing enzymes onto solid supports having enhanced catalytic activity and resistance to harsh external conditions is considered as a promising and critical method of broadening enzymatic applications in biosensing, biocatalysis, and biomedical devices; however, it is considerably hampered by limited strategies. Here, a core-shell strategy involving a soft-core hexahistidine metal assembly (HmA) is innovatively developed and characterized with encapsulated enzymes (catalase (CAT), horseradish peroxidase, glucose oxidase (GOx), and cascade enzymes (CAT+GOx)) and hard porous shells (zeolitic imidazolate framework (ZIF), ZIF-8, ZIF-67, ZIF-90, calcium carbonate, and hydroxyapatite). The enzyme-friendly environment provided by the embedded HmA proves beneficial for enhanced catalytic activity, which is particularly effective in preserving fragile enzymes that will have been deactivated without the HmA core during the mineralization of porous shells.

View Article and Find Full Text PDF

Programmed Transformation of Osteogenesis Microenvironment by a Multifunctional Hydrogel to Enhance Repair of Infectious Bone Defects.

Adv Sci (Weinh)

January 2025

Orthopedic Institute, Department of Orthopedic Surgery, Medical 3D Printing Center, The First Affiliated Hospital, Changzhou Geriatric hospital, MOE Key Laboratory of Geriatric Diseases and Immunology, School of Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, P. R. China.

Repair of infectious bone defects remains a serious problem in clinical practice owing to the high risk of infection and excessive reactive oxygen species (ROS) during the early stage, and the residual bacteria and delayed Osseo integrated interface in the later stage, which jointly creates a complex and dynamic microenvironment and leads to bone non-union. The melatonin carbon dots (MCDs) possess antibacterial and osteogenesis abilities, greatly simplifying the composition of a multifunctional material. Therefore, a multifunctional hydrogel containing MCDs (GH-MCD) is developed to meet the multi-stage and complex repair needs of infectious bone injury in this study.

View Article and Find Full Text PDF

Untethered Soft Robots Based on 1D and 2D Nanomaterials.

Adv Mater

January 2025

School of Mechanical Engineering, Southeast University, Nanjing, Jiangsu, 211189, P. R. China.

Biological structures exhibit autonomous and intelligent behaviors, such as movement, perception, and responses to environmental changes, through dynamic interactions with their surroundings. Inspired by natural organisms, future soft robots are also advancing toward autonomy, sustainability, and interactivity. This review summarizes the latest achievements in untethered soft robots based on 1D and 2D nanomaterials.

View Article and Find Full Text PDF

Herein, a citrus processing wastewater-based biorefinery has been developed manufacturing essential oils, polyphenols and bacterial cellulose. Liquid-liquid extraction was evaluated for isolation of essential oils assessing different organic solvents, recovering 0.45 kg of essential oils per m of wastewater using n-heptane.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!