In dentistry, barrier membranes are used for guided tissue regeneration (GTR) and guided bone regeneration (GBR). Various membranes are commercially available and extensive research and development of novel membranes have been conducted. In general, membranes are required to provide barrier function, biosafety, biocompatibility and appropriate mechanical properties. In addition, membranes are expected to be bioactive to promote tissue regeneration. This review aims to organize the fundamental characteristics of the barrier membranes that are available and studied for dentistry, based on their components. The principal components of barrier membranes are divided into nonbiodegradable and biodegradable materials. Nonbiodegradable membranes are manufactured from synthetic polymers, metals or composites of these materials. The first reported barrier membrane was made from expanded polytetrafluoroethylene (e-PTFE). Titanium has also been applied for dental regenerative therapy and shows favorable barrier function. Biodegradable membranes are mainly made from natural and synthetic polymers. Collagens are popular materials that are processed for clinical use by cross-linking. Aliphatic polyesters and their copolymers have been relatively recently introduced into GTR and GBR treatments. In addition, to improve the tissue regenerative function and mechanical strength of biodegradable membranes, inorganic materials such as calcium phosphate and bioactive glass have been incorporated at the research stage. Currently, there are still insufficient guidelines for barrier membrane choice in GTR and GBR, therefore dentists are required to understand the characteristics of barrier membranes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8158285 | PMC |
http://dx.doi.org/10.1080/26415275.2021.1925556 | DOI Listing |
Front Biosci (Landmark Ed)
January 2025
Institute of Translational Medicine, Shanghai University, 200444 Shanghai, China.
Background: Dexamethasone has proven life-saving in severe acute respiratory syndrome (SARS) and COVID-19 cases. However, its systemic administration is accompanied by serious side effects. Inhalation delivery of dexamethasone (Dex) faces challenges such as low lung deposition, brief residence in the respiratory tract, and the pulmonary mucus barrier, limiting its clinical use.
View Article and Find Full Text PDFViruses
January 2025
Division of Gastroenterology and Hepatology, University of New Mexico, Albuquerque, NM 87131, USA.
Interactions between bacteriophages with mammalian immune cells are of great interest and most phages possess at least one molecular pattern (nucleic acid, sugar residue, or protein structure) that is recognizable to the immune system through pathogen associated molecular pattern (PAMP) receptors (i.e., TLRs).
View Article and Find Full Text PDFPharmaceutics
December 2024
Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, 3 Rokietnicka St., 60-806 Poznan, Poland.
Curcumin and hesperetin are plant polyphenols known for their poor solubility. To address this limitation, we prepared amorphous PVP K30-phosphatidylcholine dispersions via hot-melt extrusion. This study aimed to evaluate the effects of the amounts of active ingredients and phosphatidylcholine, as well as the process temperature, on the performance of the dispersions.
View Article and Find Full Text PDFNutrients
January 2025
Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.
A fucoidan oligosaccharide (FOS), a potent compound derived from algae, is known for its diverse biological activities, including prebiotic activity, anticancer activity, and antioxidative properties, and has demonstrated supportive therapeutic effects in treating kidney ailments. This study was conducted to explore the protective influence of FOS on kidney damage due to aging induced by D-galactose in Sprague Dawley (SD) rats. The low-dose FOS group was administered FOS (100 mg/kg) by gavage, and the high-FOS group received FOS (200 mg/kg) by gavage.
View Article and Find Full Text PDFSensors (Basel)
January 2025
State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China.
Current teleoperated robotic systems for retinal surgery cannot effectively control subtle tool-to-tissue interaction forces. This limitation may lead to patient injury caused by the surgeon's mistakes. To improve the safety of retinal surgery, this paper proposes a haptic shared control framework for teleoperation based on a force-constrained supervisory controller.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!