AI Article Synopsis

  • Nanoemulsions are effective delivery systems for hydrophobic and hydrophilic compounds due to their low toxicity and ability to improve stability and bioavailability, particularly of glutathione (GSH) in aqueous environments.
  • The study focused on creating nanoemulsions from seed oils to enhance the stability of GSH and evaluate their hepatoprotective effects against ethanol toxicity in liver cells (THLE-2).
  • Results indicated that the nanoemulsions showed promising protective effects on the THLE-2 cell line when pretreated prior to exposure to ethanol, suggesting potential for future applications in liver protection.

Article Abstract

To improve bioavailability and stability of hydrophobic and hydrophilic compounds, nanoemulsions are good alternatives as delivery systems because of their nontoxic and nonirritant nature. Glutathione (GSH) suffers from low stability in water, where its encapsulation in nanoemulsions is a powerful strategy to its stability in aqueous systems. The aim of this study was to obtain nanoemulsions from the hydrophobic/hydrophilic contents of seed oil so as to improve GSH stability along with bioavailability of seed oil. Then, the prepared nanoemulsions were tested for in vitro hepatoprotective activity against ethanol toxicity. To the best of our knowledge, there is no study on the test of nanoemulsions by the combination of seed oils and GSH in hepatoprotective activity. Here, nanoemulsions with different contents were prepared using seed oils. Content analyses and characterisation studies of prepared nanoemulsions were carried out. In order to investigate the protective effects against to ethanol exposure, THLE-2 cells were pretreated with nanoemulsions for 2 h with the maximum benign dose (0.5 mg/mL of nanoemulsions). Ethanol (400 mM) was introduced to pretreated cells and nontreated cells for 48- or 72-h periods, followed by cell viability assay was carried out. Fluorescence microscopy tests revealed the introduction of the nanoemulsions into THLE-2 cells. The findings show that nanoformulations have promising in vitro hepatoprotective effects on the THLE-2 cell line against ethanol exposure.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8164205PMC
http://dx.doi.org/10.3906/kim-2007-54DOI Listing

Publication Analysis

Top Keywords

hepatoprotective activity
12
thle-2 cells
12
nanoemulsions
11
seed oil
8
prepared nanoemulsions
8
vitro hepatoprotective
8
seed oils
8
ethanol exposure
8
cells
5
preparation glutathione
4

Similar Publications

Black cumin ( L.) (family Ranunculaceae) is a largely utilized therapeutic herb worldwide. This comprehensive review discusses the pharmacological benefits of black cumin seed oil, focusing on its bioactive component thymoquinone (TQ).

View Article and Find Full Text PDF

Thio-ProTide strategy: A novel HS donor-drug conjugate (DDC) alleviates hepatic injury innate lysosomal targeting.

Acta Pharm Sin B

December 2024

Key Laboratory of Drug Metabolism and Pharmacokinetics, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, Nanjing 210009, China.

Hydrogen sulfide (HS) is a gas signaling molecule with versatile bioactivities; however, its exploitation for disease treatment appears challenging. This study describes the design and characterization of a novel type of HS donor-drug conjugate (DDC) based on the thio-ProTide scaffold, an evolution of the ProTide strategy successfully used in drug discovery. The new HS DDCs achieved hepatic co-delivery of HS and an anti-fibrotic drug candidate named hydronidone, which synergistically attenuated liver injury and resulted in more sufficient intracellular drug exposure.

View Article and Find Full Text PDF

Hepatic encephalopathy (HE) is a syndrome that arises from acute or chronic liver failure. This study was devised to assess the impact of a combination of boswellic acid (BA) and low doses of gamma radiation (LDR) on thioacetamide (TAA)-induced HE in an animal model. The effect of daily BA treatment (175 mg/kg body weight, for four weeks) and/or fractionated low-dose γ-radiation (LDR; 0.

View Article and Find Full Text PDF

Harnessing HDAC-targeted oleanolic acid derivatives for combined anti-cancer and hepatoprotective effects.

Int J Biol Macromol

January 2025

State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China. Electronic address:

The development of anti-tumor drugs with hepatoprotective properties has always been highly valued due to their dual capabilities of safeguarding the liver and combating tumors. Moreover, when used in conjunction with specific chemotherapy drugs, they can enhance the efficacy of cancer treatment while simultaneously reducing liver damage caused by chemotherapeutic agents. Our research focused on oleanolic acid (OA), a natural compound known for its liver-protective effects.

View Article and Find Full Text PDF

Role of antioxidative stress activity of Fucoxanthin nanoparticle as hepatoprotective in diabetic rats.

Pak J Pharm Sci

January 2025

Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Airlangga, University, Surabaya, Indonesia.

This study attempts to prove that the antioxidant effect of fucoxanthin nanoparticles can prevent streptozotocin-induced rat liver damage. Fucoxanthin nanoparticles are synthesized using the high-energy ball milling method. Dynamic Light Scattering (DLS) was then used to describe the sizes of the fucoxanthin nanoparticles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!