Introduction: It has been reported that low-molecular-weight hyaluronic acid (LMWHA) exhibits a potentially beneficial effect on cancer therapy through targeting of CD44 receptors on tumor cell surfaces. However, its applicability towards tumor detection is still unclear. In this regard, LMWHA-conjugated iron (FeO) nanoparticles (LMWHA-IONPs) were prepared in order to evaluate its application for enhancing the T2* weighted MRI imaging sensitivity for tumor detection.

Methods: LMWHA and FeO NPs were produced using γ-ray irradiation and chemical co-precipitation methods, respectively. First, LMWHA-conjugated FITC was prepared to confirm the ability of LMWHA to target U87MG cells using fluorescence microscopy. The hydrodynamic size distribution and dispersion of the IONPs and prepared LMWHA-IONPs were analyzed using dynamic light scattering (DLS). In addition, cell viability assays were performed to examine the biocompatibility of LMWHA and LMWHA-IONPs toward U87MG human glioblastoma and NIH3T3 fibroblast cell lines. The ability of LMWHA-IONPs to target tumor cells was confirmed by detecting iron (Fe) ion content using the thiocyanate method. Finally, time-of-flight secondary ion mass spectrometry (TOF-SIMS) imaging and in vitro magnetic resonance imaging (MRI) were performed to confirm the contrast enhancement effect of LMWHA-IONPs.

Results: Florescence analysis results showed that LMWHA-FITC successfully targeted the surfaces of both tested cell types. The ability of LMWHA to target U87MG cells was higher than for NIH3T3 cells. Cell viability experiments showed that the fabricated LMWHA-IONPs possessed good biocompatibility for both cell lines. After co-culturing test cells with the LMWHA-IONPs, detected Fe ion content in the U87MG cells was much higher than that of the NIH3T3 cells in both thiocyanate assays and TOF-SIMs images. Finally, the addition of LMWHA-IONPs to the U87MG cells resulted in an obvious improvement in T2* weighted MR image contrast compared to control NIH3T3 cells.

Discussion: Overall, the present results suggest that LMWHA-IONPs fabricated in this study provide an effective MRI contrast agent for improving the diagnosis of early stage glioblastoma in MRI examinations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8179824PMC
http://dx.doi.org/10.2147/IJN.S307648DOI Listing

Publication Analysis

Top Keywords

u87mg cells
16
t2* weighted
12
cells
9
weighted mri
8
mri imaging
8
imaging sensitivity
8
lmwha-ionps
8
ability lmwha
8
lmwha target
8
target u87mg
8

Similar Publications

Glioblastoma is considered the most malignant central nervous system tumor. This study aimed to investigate effects of latent transforming growth factor-β binding protein-2 (LTBP2) on glioblastoma growth and associated mechanisms. LTBP2 gene transcription in glioblastoma was determined using RT-PCR.

View Article and Find Full Text PDF

Glioblastoma, with a low survival rate, is an aggressive and difficult-to-treat lethal type of brain cancer. Indomethacin (IND), a non-steroidal anti-inflammatory drug, has antitumoral activity in many cancers, including gliomas. However, its poor aqueous solubility is a critical issue.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates a new cancer treatment system called Chit-IOCO-MTX-Cy5, which combines chitosan nanocomposites with cerium oxide and iron oxide nanoparticles, along with methotrexate and a dye for imaging.
  • The system acts as both an anti-cancer agent and enhances MRI imaging, showing high effectiveness with better results than currently approved imaging agents.
  • It significantly reduces tumor growth with no regrowth after treatment, while showing good safety in mice, indicating its potential as an effective cancer theranostic tool.
View Article and Find Full Text PDF

Background: Glioblastoma multiforme (GBM) is an aggressive brain tumor that primarily affects adults. The Stupp Protocol, which includes surgical resection, chemoradiation, and monotherapy with temozolomide (TMZ), is the standard treatment regimen for GBM. However, repeated use of TMZ leads to resistance in GBM cells, resulting in a poor prognosis for patients.

View Article and Find Full Text PDF

Arachidonoylethanolamide promotes cellular senescence in a human glioblastoma cell line.

Biochem Biophys Res Commun

January 2025

Laboratorio de Neuroquímica, Facultad de Medicina, Universidad Autónoma Del Estado de México, Paseo Tollocan esq, Jesús Carranza s/n, Col. Moderna de la Cruz, Toluca, Mexico, CP 50180. Electronic address:

Glioblastomas are the most common and deadly primary brain tumors, with high mortality rates despite aggressive therapies. Cellular senescence is important for cancer development, as it limits tumor progression; however, it may also stimulate inflammation at the tumor microenvironment, promoting tumor development. Hence, modulation of senescence is an important target for cancer therapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!