A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Multiparametric biophysical profiling of red blood cells in malaria infection. | LitMetric

Biophysical separation promises label-free, less-invasive methods to manipulate the diverse properties of live cells, such as density, magnetic susceptibility, and morphological characteristics. However, some cellular changes are so minute that they are undetectable by current methods. We developed a multiparametric cell-separation approach to profile cells with simultaneously changing density and magnetic susceptibility. We demonstrated this approach with the natural biophysical phenomenon of Plasmodium falciparum infection, which modifies its host erythrocyte by simultaneously decreasing density and increasing magnetic susceptibility. Current approaches have used these properties separately to isolate later-stage infected cells, but not in combination. We present biophysical separation of infected erythrocytes by balancing gravitational and magnetic forces to differentiate infected cell stages, including early stages for the first time, using magnetic levitation. We quantified height distributions of erythrocyte populations-27 ring-stage synchronized samples and 35 uninfected controls-and quantified their unique biophysical signatures. This platform can thus enable multidimensional biophysical measurements on unique cell types.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8187722PMC
http://dx.doi.org/10.1038/s42003-021-02181-3DOI Listing

Publication Analysis

Top Keywords

magnetic susceptibility
12
biophysical separation
8
density magnetic
8
biophysical
5
magnetic
5
multiparametric biophysical
4
biophysical profiling
4
profiling red
4
red blood
4
cells
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!