Ca/calmodulin-dependent protein kinase II (CaMKII) binding and phosphorylation of mammalian connexin-36 (Cx36) potentiate electrical coupling. To explain the molecular mechanism of how Cx36 modifies plasticity at gap junctions, we investigated the roles of ionotropic N-methyl-D-aspartate receptors and pannexin1 (Panx1) channels in regulating Cx36 binding to CaMKII. Pharmacological interference and site-directed mutagenesis of protein interaction sites shows that NMDA receptor activation opens Cx36 channels, causing the Cx36- CaMKII binding complex to adopt a compact conformation. Ectopic Panx1 expression in a Panx1 knock-down cell line is required to restore CaMKII mediated opening of Cx36. Furthermore, blocking of Src-family kinase activation of Panx1 is sufficient to prevent the opening of Cx36 channels. Our research demonstrates that the efficacy of Cx36 channels requires convergent calcium-dependent signaling processes in which activation of ionotropic N-methyl-D-aspartate receptor, Src-family kinase, and Pannexin1 open Cx36. Our results add to the best of our knowledge a new twist to mounting evidence for molecular communication between these core components of electrical and chemical synapses.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8187354 | PMC |
http://dx.doi.org/10.1038/s42003-021-02230-x | DOI Listing |
Nat Commun
October 2024
Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul, 08826, Korea.
Connexin 36 (Cx36) forms interneuronal gap junctions, establishing electrical synapses for rapid synaptic transmission. In disease conditions, inhibiting Cx36 gap junction channels (GJCs) is beneficial, as it prevents abnormal synchronous neuronal firing and apoptotic signal propagation, mitigating seizures and progressive cell death. Here, we present cryo-electron microscopy structures of human Cx36 GJC in complex with known channel inhibitors, such as mefloquine, arachidonic acid, and 1-hexanol.
View Article and Find Full Text PDFBio Protoc
July 2024
College of Optometry, University of Houston, Houston, TX, USA.
Overexpression of proteins in transiently transfected cells is a simple way to study basic transport mechanisms and the underlying protein-protein interactions. While expression systems have obvious drawbacks compared to in vivo experiments, they allow a quick assessment of more conserved functions, for instance, ER export or sorting of proteins in the Golgi. In a previous study, our group described the formation of ER-derived removal vesicles for the gap junction protein Cx36 in transfected HEK293T cells.
View Article and Find Full Text PDFBiology (Basel)
June 2024
Departamento de Biología Celular y Tisular, Facultad de Medicina, UNAM, Mexico City 04510, Mexico.
Unlabelled: Glucotoxicity may exert its deleterious effects on pancreatic β-cell function via a myriad of mechanisms, leading to impaired insulin secretion and, eventually, type 2 diabetes. β-cell communication requires gap junction channels to be present among these cells. Gap junctions are constituted by transmembrane proteins of the connexins (Cxs) family.
View Article and Find Full Text PDFMath Biosci
August 2024
Department of Mathematics, Erzurum Technical University, Erzurum, Turkey; Department of Cardiology, Erasmus University Medical Center, Rotterdam, The Netherlands. Electronic address:
Gain of function mutations in the pore forming Kir6 subunits of the ATP sensitive K channels (K(ATP) channels) of pancreatic β-cells are the major cause of neonatal diabetes in humans. In this study, we show that in insulin secreting mouse β-cell lines, gain of function mutations in Kir6.1 result in a significant connexin36 (Cx36) overexpression, which form gap junctional connections and mediate electrical coupling between β-cells within pancreatic islets.
View Article and Find Full Text PDFBiochem J
June 2024
Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada N6A 5C1.
Mutations in more than half of human connexin genes encoding gap junction (GJ) subunits have been linked to inherited human diseases. Functional studies of human GJ channels are essential for revealing mechanistic insights into the etiology of disease-linked connexin mutants. However, the commonly used Xenopus oocytes, N2A, HeLa, and other model cells for recombinant expression of human connexins have different and significant limitations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!