To explore the application of computed tomography (CT)-enhanced radiomics for the risk-grade prediction of gastrointestinal stromal tumors (GIST). GIST patients (n = 292) confirmed by surgery or endoscopic pathology during June 2013-2019 were reviewed and categorized into low-grade (very low to low risk) and high-grade (medium to high risk) groups. The tumor region of interest (ROI) was depicted layer by layer on each patient's enhanced CT venous phase images using the ITK-SNAP. The texture features were extracted using the Analysis Kit (AK) and then randomly divided into the training (n = 205) and test (n = 87) groups in a ratio of 7:3. After dimension reduction by the least absolute shrinkage and the selection operator algorithm (LASSO), a prediction model was constructed using the logistic regression method. The clinical data of the two groups were statistically analyzed, and the multivariate regression prediction model was constructed by using statistically significant features. The ROC curve was applied to evaluate the prediction performance of the proposed model. A radiomics-prediction model was constructed based on 10 characteristic parameters selected from 396 quantitative feature parameters extracted from the CT images. The proposed radiomics model exhibited effective risk-grade prediction of GIST. For the training group, the area under curve (AUC), sensitivity, specificity, and accuracy rate were 0.793 (95%CI: 0.733-0.854), 83.3%, 64.3%, and 72.7%, respectively; the corresponding values for the test group were 0.791 (95%CI: 0.696-0.886), 84.2%, 69.3%, and 75.9%, respectively. There were significant differences in age (t value: - 3.133, P = 0.008), maximum tumor diameter (Z value: - 12.163, P = 0.000) and tumor morphology (χ value:10.409, P = 0.001) between the two groups, which were used to establish a clinical prediction model. The area under the receiver operating characteristic curve of the clinical model was 0.718 (95%CI: 0.659-0.776). The proposed CT-enhanced radiomics model exhibited better accuracy and effective performance than the clinical model, which can be used for the assessment of risk grades of GIST.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8187426PMC
http://dx.doi.org/10.1038/s41598-021-91508-5DOI Listing

Publication Analysis

Top Keywords

radiomics model
12
prediction model
12
model constructed
12
model
9
computed tomography
8
prediction gastrointestinal
8
gastrointestinal stromal
8
stromal tumors
8
ct-enhanced radiomics
8
risk-grade prediction
8

Similar Publications

Objective: This study aimed to explore and evaluate a novel method for diagnosing patellar chondromalacia using radiomic features from patellar sagittal T2-weighted images (T2WI).

Methods: The experimental data included sagittal T2WI images of the patella from 40 patients with patellar chondromalacia and 40 healthy volunteers. The training set comprised 30 cases of chondromalacia and 30 healthy volunteers, while the test set included 10 cases of each.

View Article and Find Full Text PDF

The standard therapy for locally unresectable advanced non-small cell lung cancer (NSCLC) is comprised of chemoradiotherapy (CRT) before immunotherapy (IO) consolidation. However, how to predict treatment outcomes and recognize patients that will benefit from IO remain unclear. This study aimed to identify prognostic biomarkers by integrating computed tomography (CT)-based radiomics and genomics.

View Article and Find Full Text PDF

Utilizing machine-learning techniques on MRI radiomics to identify primary tumors in brain metastases.

Front Neurol

January 2025

Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.

Objective: To develop a machine learning-based clinical and/or radiomics model for predicting the primary site of brain metastases using multiparametric magnetic resonance imaging (MRI).

Materials And Methods: A total of 202 patients (87 males, 115 females) with 439 brain metastases were retrospectively included, divided into training sets (brain metastases of lung cancer [BMLC]  = 194, brain metastases of breast cancer [BMBC]  = 108, brain metastases of gastrointestinal tumor [BMGiT]  = 48) and test sets (BMLC  = 50, BMBC  = 27, BMGiT  = 12). A total of 3,404 quantitative image features were obtained through semi-automatic segmentation from MRI images (T1WI, T2WI, FLAIR, and T1-CE).

View Article and Find Full Text PDF

Objective: This meta-analysis aims to evaluate the diagnostic accuracy of magnetic resonance imaging (MRI) based radiomic features for predicting epidermal growth factor receptor (EGFR) mutation status in non-small cell lung cancer (NSCLC) patients with brain metastases.

Methods: We systematically searched PubMed, Embase, Cochrane Library, Web of Science, Scopus, Wanfang, and China National Knowledge Infrastructure (CNKI) for studies published up to April 30, 2024. We included those studies that utilized MRI-based radiomic features to detect EGFR mutations in NSCLC patients with brain metastases.

View Article and Find Full Text PDF

Background: Radiomics holds great potential for the noninvasive evaluation of EGFR-TKIs and ICIs responses, but data privacy and model robustness challenges limit its current efficacy and safety. This study aims to develop and validate an encrypted multidimensional radiomics approach to enhance the stratification and analysis of therapeutic responses.

Materials And Methods: This multicenter study incorporated various data types from 506 NSCLC patients, which underwent preprocessing through anonymization methods and were securely encrypted using the AES-CBC algorithm.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!