Zeolitic Imidazolate Frameworks (ZIF-8) for Biomedical Applications: A Review.

Curr Med Chem

Advanced Multifunctional Materials Laboratory, Department of Chemistry, Assiut University, Assiut 71516, Egypt.

Published: October 2021

Beyond being an excellent protective material for bioentities, zeolitic imidazolate frameworks (ZIF-8) have advanced several applications, including biomedical applications. The straightforward synthesis of ZIF-8 at mild conditions improved the biomineralization of several biomolecules, e.g., protein, peptides, carbohydrate, and biological cells, such as viruses and bacterial cells. Bioinspiration of ZIF-8 enhanced and improved the material's applications for biomedicine. This review article summarized the recent achievements of ZIF-8 for biomedical applications such as cancer therapy, antimicrobial, biosensing, and biocatalysis. ZIF8-based materials advanced cancer therapy via drug delivery of chemotherapeutic drugs, photothermal therapy (PTT), photodynamic therapy (PDT), chemodynamic therapy (CDT), gene therapy, and starvation therapy. Antibacterial agent encapsulated ZIF-8 exhibited superior biological activity compared to the free antibacterial agents. ZIF-8 based materials enhanced the selectivity and sensitivity for analytes' biosensing, ensuring their potential for electronic devices. Biocatalysis of enzyme encapsulated ZIF-8 offered high catalytic performance with robust properties for recycling. ZIF-8 acts as a protective host for enzymes, proteins, and drugs from degradation induced due to temperature, solvents, and proteolytic agents. The first part of the review discussed the structure, chemistry, and bioinspiration of ZIF-8. The second part reviewed the biomedical applications of ZIF-8. The potential risks and current challenges of using ZIF-8 for biomedical applications were also reviewed.

Download full-text PDF

Source
http://dx.doi.org/10.2174/0929867328666210608143703DOI Listing

Publication Analysis

Top Keywords

biomedical applications
20
zif-8
12
zif-8 biomedical
12
zeolitic imidazolate
8
imidazolate frameworks
8
frameworks zif-8
8
bioinspiration zif-8
8
cancer therapy
8
encapsulated zif-8
8
applications
7

Similar Publications

Design strategies and biomedical applications of organic NIR-IIb fluorophores.

Chem Commun (Camb)

January 2025

Marshall Laboratory of Biomedical Engineering, International Cancer Center, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China.

The introduction of fluorescence imaging (FLI) in near-infrared II sub-channels (NIR-IIb, 1500-1700 nm) has revolutionized the ability to explore complex patho-physiological settings . Despite the transformative potentials, the development of organic NIR IIb dyes encounters considerable difficulties, and only a limited number of such fluorophores have been developed so far. This review systematically introduces design strategies of organic NIR-IIb fluorophores classified by molecular scaffolds, mainly including cyanine dyes and D-A-D small molecule dyes.

View Article and Find Full Text PDF

In a rapidly evolving healthcare environment, artificial intelligence (AI) is transforming diagnostic techniques and personalised medicine. This is also seen in osseous biopsies. AI applications in radiomics, histopathology, predictive modelling, biopsy navigation, and interdisciplinary communication are reshaping how bone biopsies are conducted and interpreted.

View Article and Find Full Text PDF

Enantiomer-Dependent Supramolecular Antibacterial Therapy for Drug-Resistant Bacterial Keratitis.

Langmuir

January 2025

National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China.

Bacteria have the potential to exhibit divergent stereochemical preferences for different levels of chiral structures, including from molecule, supramolecule, to nanomicroscale helical structure. Accordingly, the structure-activity relationship between chirality and bactericidal activity remains uncertain. In this study, we seek to understand the multivalent molecular chirality effect of chiral supramolecular polymers on antibacterial activity.

View Article and Find Full Text PDF

Nanomaterials and clinical SERS technology: broad applications in disease diagnosis.

J Mater Chem B

January 2025

Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Laboratory of Advanced Theranostic Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.

The critical need for rapid cancer diagnosis and related illnesses is growing alongside the current healthcare challenges, unfavorable prognosis, and constraints in diagnostic timing. As a result, emphasis on surface-enhanced Raman spectroscopy (SERS) diagnostic methods, including both label-free and labelled approaches, holds significant promise in fields such as analytical chemistry, biomedical science, and physics, due to the user-friendly nature of SERS. Over time, the SERS detection sensitivity and specificity with nanostructured materials for SERS applications (NMs-SERS) in different media have been remarkable.

View Article and Find Full Text PDF

Lipid nanoparticles (LNPs) based messenger RNA (mRNA) therapeutics hold immense promise for treating a wide array of diseases, while their nonhepatic organs targeting and insufficient endosomal escape efficiency remain challenges. For LNPs, polyethylene glycol (PEG) lipids have a crucial role in stabilizing them in aqueous medium, but they severely hinder cellular uptake and reduce transfection efficiency. In this study, we designed ultrasound (US)-assisted fluorinated PEGylated LNPs (F-LNPs) to enhance spleen-targeted mRNA delivery and transfection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!