Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Exposure to airborne particulate matter (PM2.5) is associated with cardiovascular diseases. In order to investigate the molecular mechanisms of air pollution-induced CVDs toxicity, human umbilical vein endothelial cells (HUVECs) were exposed to PM2.5 collected from January, 2016 winter in Beijing, China. We performed RNA sequencing to elucidate key molecular mechanism of PM 2.5-mediated toxicity in HUVECs. A total of 1753 genes, 864 up-regulated and 889 down-regulated, were observed to be differentially expressed genes (DEGs). Among these, genes involved in metabolic response, oxidative stress, inflammatory response, and vascular dysfunction were significantly differentially expressed (log2 FC > 4). The results were validated by quantitative real-time PCR (qPCR) and Western blot for CYP1B1, HMOX1, IL8, and GJA4. Pathway analysis revealed that DEGs were involved in the biological processes related to metabolism, inflammation, and host defense against environmental insults. This research is providing a further understanding of the mechanisms underlying PM2.5-induced cardiovascular diseases (CVDs).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/09603123.2021.1935785 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!