Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Multi-junction solar cells constitute the main source of power for space applications. However, exposure of solar cells to the space radiation environment significantly degrades their performance across the mission lifetime. Here, we seek to improve the radiation hardness of the triple junction solar cell, GaInP/Ga(In)As/Ge, by decreasing the thickness of the more sensitive middle junction. Thin junctions facilitate the collection of minority carriers and show slower degradation due to defects. However, thinning the junction decreases the absorption, and consequently, the expected photocurrent. To compensate for this loss, we examined two bioinspired surface patterns that exhibit anti-reflective and light-trapping properties: (a) the moth-eye structure which enables vision in poorly illuminated environments and (b) the patterns of the hard cell of a unicellular photosynthetic micro-alga, the diatoms. We parametrize and optimize the biomimetic structures, aiming to maximize the absorbed light by the solar cell while achieving significant reduction in the middle junction thickness. The density of the radiation-induced defects is independent of the junction thickness, as we demonstrate using Monte Carlo simulations, allowing the direct comparison of different combinations of middle junction thicknesses and light trapping structures. We incorporate the radiation effects into the solar cell model as a decrease in minority carrier lifetime and an increase in surface recombination velocity, and we quantify the gain in efficiency for different combinations of junction thickness and the light-trapping structure at equal radiation damage. Solar cells with thin junctions compensated by the light-trapping structures offer a promising approach to improve solar cell radiation hardness and robustness, with up to 2% higher end-of-life efficiency than the commonly used configuration at high radiation exposure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1748-3190/ac095b | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!