A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Silver nanoparticles stabilized by ramnolipids: Effect of pH. | LitMetric

Silver nanoparticles stabilized by ramnolipids: Effect of pH.

Colloids Surf B Biointerfaces

São Paulo State University (Unesp), Institute of Biosciences, Rio Claro, São Paulo, Brazil; São Paulo State University (Unesp), Institute for Research in Bioenergy, Rio Claro, São Paulo, Brazil. Electronic address:

Published: September 2021

Rhamnolipids are glycolipid biosurfactants that have remarkable physicochemical characteristics, such as the capacity for self-assembly, which makes these biomolecules a promising option for application in nanobiotechnology. Rhamnolipids produced from a low-cost carbon source (glycerol) were used to stabilize silver nanoparticles. Silver nanoparticles (AgNPs) have been the subject of studies due to their physical chemical as well as biological properties, which corroborate their catalytic and antimicrobial activity. We compared nanoparticles obtained with three different pH values during synthesis (5, 7 and 9) in the presence of rhamnolipids. Dynamic light scattering showed that larger particles were formed at pH 5 (78-190 nm) compared to pH 7 (6.5-43 nm) and 9 (5.6-28.1 nm). Moreover, nanoparticle stability (analyzed based on the zeta potential) was enhanced with the increase in pH from 5 to 9 (-29.86 ± 1.04, -37.83 ± 0.90 and -40.33 ± 0.57 mV, respectively). Field emission gun scanning electron microscopy confirmed the round morphology of the silver nanoparticles. The LSPR spectra of AgNP for the pHs studied are conserved. In conclusion, different pH values in the presence of rhamnolipids used in the synthesis of silver nanoparticles directly affect nanoparticle size and stability.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.colsurfb.2021.111883DOI Listing

Publication Analysis

Top Keywords

silver nanoparticles
20
presence rhamnolipids
8
silver
5
nanoparticles
5
nanoparticles stabilized
4
stabilized ramnolipids
4
rhamnolipids
4
ramnolipids rhamnolipids
4
rhamnolipids glycolipid
4
glycolipid biosurfactants
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!