Flame synthesis of carbon nanoparticles from corn oil as a highly effective cationic dye adsorbent.

Chemosphere

Department of Chemical Engineering, University of Waterloo, Waterloo, ON, Canada; Institute of Polymer Research, University of Waterloo, Waterloo, ON, Canada; Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, Canada. Electronic address:

Published: November 2021

AI Article Synopsis

Article Abstract

Carbon nanoparticles (CNP) were synthesized through flame deposition method from a sustainable corn oil precursor. The morphology, particle size, surface chemistry, thermal stability, and zeta potential of the CNP were characterized. The batch adsorption of a cationic dye, methylene blue (MB), by the CNP at various concentrations, pH, and temperatures was evaluated to investigate the CNP's efficacy in industrial wastewater treatment applications. Results revealed the excellent adsorption of MB onto the CNP. The experimental data were then fitted into isotherm models, kinetic models, and thermodynamic models, and the model parameters, constants, Gibb free energy, enthalpy, and entropy were calculated and discussed. Hydrogen bonding and strong electrostatic interaction were the main adsorption mechanism for MB adsorption by the CNP. The CNP exhibited a maximum adsorption capacity of 138.89 mg/g, indicating superior adsorption of MB dye without the need for any further purification and activation steps. The adsorption efficiency did not compromise as the solution temperature increased up to 60 °C, and it can further be enhanced under alkaline conditions. To simulate the practical and industrial use of the developed CNP in textile effluent treatment, successful experiments were conducted in continuous flow adsorption by allowing concentrated MB solution to flow through a designed fixed bed purification system with a CNP filter bed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2021.131062DOI Listing

Publication Analysis

Top Keywords

carbon nanoparticles
8
corn oil
8
cationic dye
8
cnp
8
adsorption
8
adsorption cnp
8
flame synthesis
4
synthesis carbon
4
nanoparticles corn
4
oil highly
4

Similar Publications

Building insights into the structure-performance relationship of catalysts has been emphasized recently. However, it remains a challenge due to catalysts' various and complex structures, especially the easily overlooked influence of the support material. Here, we reveal the crucial influences of boron introduction on synthesizing 3D carbon nanotube monoliths with embedded multistate Co metals, i.

View Article and Find Full Text PDF

Zebrafish serve as a pivotal model for bioimaging and toxicity assessments; however, the toxicity of banana peel-derived carbon dots in zebrafish has not been previously reported. The aim of this study was to assess the toxicity of carbon dots derived from banana peel in zebrafish, focusing on two types prepared through hydrothermal and pyrolysis methods. Banana peels were synthesized using hydrothermal and pyrolysis techniques and then compared for characteristics, bioimaging ability, and toxicity in zebrafish as an animal model.

View Article and Find Full Text PDF

The strong influence of surface adsorbates on the morphology of a catalyst is exemplified by studying a silver surface with and without deposited zinc oxide nanoparticles upon exposure to reaction gases used for carbon dioxide hydrogenation. Ambient pressure X-ray photoelectron spectroscopy and scanning tunneling microscopy measurements indicate accumulation of carbon deposits on the catalyst surface at 200 °C. While oxygen-free carbon species observed on pure silver show a strong interaction and decorate the atomic steps on the catalyst surface, this decoration is not observed for the oxygen-containing species observed on the silver surface with additional zinc oxide nanoparticles.

View Article and Find Full Text PDF

Structural Transformation and Degradation of Cu Oxide Nanocatalysts during Electrochemical CO Reduction.

J Am Chem Soc

January 2025

Liquid Sunlight Alliance, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States.

The electrochemical CO reduction reaction (CORR) holds enormous potential as a carbon-neutral route to the sustainable production of fuels and platform chemicals. The durability for long-term operation is currently inadequate for commercialization, however, and the underlying deactivation process remains elusive. A fundamental understanding of the degradation mechanism of electrocatalysts, which can dictate the overall device performance, is needed.

View Article and Find Full Text PDF

Integrating nanotechnology with tissue engineering has revolutionized biomedical sciences, enabling the development of advanced therapeutic strategies. Tissue engineering applications widely utilize alginate due to its biocompatibility, mild gelation conditions, and ease of modification. Combining different nanomaterials with alginate matrices enhances the resulting nanocomposites' physicochemical properties, such as mechanical, electrical, and biological properties, as well as their surface area-to-volume ratio, offering significant potential for tissue engineering applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!