Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Colonoscopy is the gold standard for pre-cancerous polyps screening and treatment. The polyp detection rate is highly tied to the percentage of surveyed colonic surface. However, current colonoscopy technique cannot guarantee that all the colonic surface is well examined because of incomplete camera orientations and of occlusions. The missing regions can hardly be noticed in a continuous first-person perspective. Therefore, a useful contribution would be an automatic system that can compute missing regions from an endoscopic video in real-time and alert the endoscopists when a large missing region is detected. We present a novel method that reconstructs dense chunks of a 3D colon in real time, leaving the unsurveyed part unreconstructed. The method combines a standard SLAM system with a depth and pose prediction network to achieve much more robust tracking and less drift. It addresses the difficulties for colonoscopic images of existing simultaneous localization and mapping (SLAM) systems and end-to-end deep learning methods.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8316389 | PMC |
http://dx.doi.org/10.1016/j.media.2021.102100 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!