The superior colliculus, or tectum in the case of non-mammalian vertebrates, is a part of the brain that registers events in the surrounding space, often through vision and hearing, but also through electrosensation, infrared detection, and other sensory modalities in diverse vertebrate lineages. This information is used to form maps of the surrounding space and the positions of different salient stimuli in relation to the individual. The sensory maps are arranged in layers with visual input in the uppermost layer, other senses in deeper positions, and a spatially aligned motor map in the deepest layer. Here, we will review the organization and intrinsic function of the tectum/superior colliculus and the information that is processed within tectal circuits. We will also discuss tectal/superior colliculus outputs that are conveyed directly to downstream motor circuits or via the thalamus to cortical areas to control various aspects of behavior. The tectum/superior colliculus is evolutionarily conserved among all vertebrates, but tailored to the sensory specialties of each lineage, and its roles have shifted with the emergence of the cerebral cortex in mammals. We will illustrate both the conserved and divergent properties of the tectum/superior colliculus through vertebrate evolution by comparing tectal processing in lampreys belonging to the oldest group of extant vertebrates, larval zebrafish, rodents, and other vertebrates including primates.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8190998PMC
http://dx.doi.org/10.1016/j.cub.2021.04.001DOI Listing

Publication Analysis

Top Keywords

tectum/superior colliculus
16
colliculus vertebrate
8
surrounding space
8
colliculus
5
tectum/superior
4
vertebrate solution
4
solution spatial
4
sensory
4
spatial sensory
4
sensory integration
4

Similar Publications

The tectofugal pathway is a highly conserved visual pathway in all amniotes. In birds and mammals, retinorecipient neurons located in the midbrain roof (optic tectum/superior colliculus) are the source of ascending projections to thalamic relays (nucleus rotundus/caudal pulvinar), which in turn project to specific pallial regions (visual dorsal ventricular ridge [vDVR]/temporal cortex) organized according to a columnar recurrent arrangement of interlaminar circuits. Whether or to which extent these striking hodological correspondences arise from comparable developmental processes is at present an open question, mainly due to the scarcity of data about the ontogeny of the avian tectofugal system.

View Article and Find Full Text PDF

The superior colliculus, or tectum in the case of non-mammalian vertebrates, is a part of the brain that registers events in the surrounding space, often through vision and hearing, but also through electrosensation, infrared detection, and other sensory modalities in diverse vertebrate lineages. This information is used to form maps of the surrounding space and the positions of different salient stimuli in relation to the individual. The sensory maps are arranged in layers with visual input in the uppermost layer, other senses in deeper positions, and a spatially aligned motor map in the deepest layer.

View Article and Find Full Text PDF

The nucleus pretectalis principalis: A pretectal structure hidden in the mammalian thalamus.

J Comp Neurol

February 2019

Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Ñuñoa, Chile.

A defining feature of the amniote tecto-fugal visual pathway is a massive bilateral projection to the thalamus originating from a distinct neuronal population, tectal ganglion cells (TGCs), of the optic tectum/superior colliculus (TeO/SC). In sauropsids, the thalamic target of the tecto-fugal pathway is the nucleus rotundus thalami (Rt). TGCs axons collateralize en route to Rt to target the nucleus pretectalis principalis (PT), which in turn gives rise to bilateral projection to the TeO.

View Article and Find Full Text PDF

Engrailed homeoproteins in visual system development.

Cell Mol Life Sci

April 2015

Department of Anatomy, Institute of Clinical Anatomy and Cell Analysis, University of Tübingen, Österbergstrasse 3, 72074, Tübingen, Germany,

Engrailed is a homeoprotein transcription factor. This family of transcription factors is characterized by their DNA-binding homeodomain and some members, including Engrailed, can transfer between cells and regulate protein translation in addition to gene transcription. Engrailed is intimately involved in the development of the vertebrate visual system.

View Article and Find Full Text PDF

A paradigm model system for studying the development of patterned connections in the nervous system is the topographic map formed by retinal axons in the optic tectum/superior colliculus. Starting in the 1970s, a series of computational models have been proposed to explain map development in both normal conditions, and perturbed conditions where the retina and/or tectum/superior colliculus are altered. This stands in contrast to more recent models that have often been simpler than older ones, and tend to address more limited data sets, but include more recent genetic manipulations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!