The BRCA1-BARD1 complex directs the DNA double-strand break (DSB) repair pathway choice to error-free homologous recombination (HR) during the S-G2 stages. Targeting BRCA1-BARD1 to DSB-proximal sites requires BARD1-mediated nucleosome interaction and histone mark recognition. Here, we report the cryo-EM structure of BARD1 bound to a ubiquitinated nucleosome core particle (NCP) at 3.1 Å resolution and illustrate how BARD1 simultaneously recognizes the DNA damage-induced mark H2AK15ub and DNA replication-associated mark H4K20me0 on the nucleosome. In vitro and in vivo analyses reveal that the BARD1-NCP complex is stabilized by BARD1-nucleosome interaction, BARD1-ubiquitin interaction, and BARD1 ARD domain-BARD1 BRCT domain interaction, and abrogating these interactions is detrimental to HR activity. We further identify multiple disease-causing BARD1 mutations that disrupt BARD1-NCP interactions and hence impair HR. Together, this study elucidates the mechanism of BRCA1-BARD1 complex recruitment and retention by DSB-flanking nucleosomes and sheds important light on cancer therapeutic avenues.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.molcel.2021.05.010 | DOI Listing |
Nature
October 2024
Department of Biochemistry & Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
Nature
October 2024
Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Bellinzona, Switzerland.
STAR Protoc
September 2024
Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA. Electronic address:
Mol Cell
February 2024
Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK. Electronic address:
The Bloom syndrome helicase BLM interacts with topoisomerase IIIα (TOP3A), RMI1, and RMI2 to form the BTR complex, which dissolves double Holliday junctions and DNA replication intermediates to promote sister chromatid disjunction before cell division. In its absence, structure-specific nucleases like the SMX complex (comprising SLX1-SLX4, MUS81-EME1, and XPF-ERCC1) can cleave joint DNA molecules instead, but cells deficient in both BTR and SMX are not viable. Here, we identify a negative genetic interaction between BLM loss and deficiency in the BRCA1-BARD1 tumor suppressor complex.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2023
State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
Stromal antigen 2 (STAG2), a subunit of the cohesin complex, is recurrently mutated in various tumors. However, the role of STAG2 in DNA repair and its therapeutic implications are largely unknown. Here it is reported that knockout of STAG2 results in increased double-stranded breaks (DSBs) and chromosomal aberrations by reducing homologous recombination (HR) repair, and confers hypersensitivity to inhibitors of ataxia telangiectasia mutated (ATMi), Poly ADP Ribose Polymerase (PARPi), or the combination of both.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!