The superior colliculus (SC) has long been associated with the neural control of eye movements. Over seventy years ago, the orderly topography of saccade vectors and corresponding visual field locations were discovered in the cat SC. Since then, numerous high-impact studies have investigated and manipulated the relationship between visuotopic space and saccade vector across this topography to better understand the physiological underpinnings of the sensorimotor signal transformation. However, less attention has been paid to the other motor responses that may be associated with SC activity, ranging in complexity from concerted movements of skeletomotor muscle groups, such as arm-reaching movements, to behaviors that involve whole-body movement sequences, such as fight-or-flight responses in murine models. This review surveys these more complex movements associated with SC (optic tectum in nonmammalian species) activity and, where possible, provides phylogenetic and ethological perspective.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1146/annurev-vision-012521-102314 | DOI Listing |
Corticocortical (CC) projections in the visual system facilitate hierarchical processing of sensory information. In addition to direct CC connections, indirect cortico-thalamo-cortical (CTC) pathways through the pulvinar nucleus of the thalamus can relay sensory signals and mediate cortical interactions according to behavioral demands. While the pulvinar connects extensively to the entire visual cortex, it is unknown whether transthalamic pathways link all cortical areas or whether they follow systematic organizational rules.
View Article and Find Full Text PDFJ Neurosci
January 2025
Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University, 9 Gronostajowa street, 30-387 Kraków, Poland.
Dopaminergic (DA) neurons of the substantia nigra pars compacta (SNc) and ventral tegmental area (VTA) play a crucial role in controlling animals' orienting and approach behaviors toward relevant environmental stimuli. The ventral midbrain receives sensory input from the superior colliculus (SC), a tectal region processing information from contralateral receptive fields of various modalities. Given the significant influence of dopamine release imbalance in the left and right striatum on animals' movement direction, our study aimed to investigate the lateralization of the connection between the lateral SC and the midbrain DA system in male rats.
View Article and Find Full Text PDFNeuroscience
January 2025
Barrow Neuroimaging Innovation Center, Barrow Neurological Institute, Phoenix, AZ, 85013, USA. Electronic address:
Parkinson's disease (PD) is a progressive neurodegenerative disorder that is characterized by motor symptoms such as tremors, rigidity, and bradykinesia. Magnetic resonance imaging (MRI) offers a non-invasive means to study PD and its progression. This study utilized the unilateral 6-hydroxydopamine (6-OHDA) rat model of parkinsonism to assess whether white matter microstructural integrity measured using advanced free-water diffusion tensor imaging metrics (fw-DTI) and gray matter density using voxel-based morphometry (VBM) can serve as imaging biomarkers of pathological changes following nigrostriatal denervation.
View Article and Find Full Text PDFExp Eye Res
January 2025
State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510000, Guangdong, China. Electronic address:
Currently, research on optic nerve injury predominantly focuses on the retina and optic nerve, but emerging evidence suggests that optic nerve injury also affects advanced visual structures like the superior colliculus (SC) and primary visual cortex (V1 region). However, the exact mechanisms have not been fully explored. This study aims to investigate the characteristics and mechanisms of pathology in the SC and V1 region after optic nerve crush (ONC) to deepen our understanding of the central mechanism of visual injury.
View Article and Find Full Text PDFNeurosci Biobehav Rev
January 2025
Department of Psychology, University of Turin, Turin, Italy; Department of Medical and Clinical Psychology, Tilburg University, Netherlands; Centro Linceo Interdisciplinare "Beniamino Segre", Accademia Nazionale dei Lincei, Roma, Italy. Electronic address:
Fear responses to novel stimuli can be learned directly, through personal experiences (Fear Conditioning, FC), or indirectly, by observing conspecific reactions to a stimulus (Social Fear Learning, SFL). Although substantial knowledge exists about FC and SFL in humans and other species, they are typically conceived as mechanisms that engage separate neural networks and operate at different levels of complexity. Here, we propose a broader framework that links these two fear learning modes by supporting the view that social signals may act as unconditioned stimuli during SFL.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!