Electrochemical Assembly for Synthesis of Middle-Sized Organic Molecules.

Chem Rec

Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, 4-101 Koyamacho-minami, Tottori city, 680-8552 Tottori, Japan.

Published: September 2021

Electrochemical methods offer a powerful, reliable, and environmentally benign approach for the synthesis of small organic molecules, and such methods are useful not only for the transformation of small molecules, but also for the preparation of oligomers and polymers. Electrochemical assembly is a concept that allows structurally well-defined middle-sized organic molecules to be synthesized by applying electrochemical methods. The preparation of dendrimers, dendronized polymers, and oligosaccharides are introduced as examples of such an approach. Automated electrochemical assembly of oligosaccharides is also demonstrated using the electrochemical synthesizer developed by our group.

Download full-text PDF

Source
http://dx.doi.org/10.1002/tcr.202100085DOI Listing

Publication Analysis

Top Keywords

electrochemical assembly
12
organic molecules
12
middle-sized organic
8
electrochemical methods
8
electrochemical
6
assembly synthesis
4
synthesis middle-sized
4
molecules
4
molecules electrochemical
4
methods offer
4

Similar Publications

Membrane-assisted direct seawater splitting (DSS) technologies are actively studied as a promising route to produce green hydrogen (H2), whereas the indispensable use of supporting electrolytes that help to extract water and provide electrochemically-accelerated reaction media results in a severe energy penalty, consuming up to 12.5% of energy input when using a typical KOH electrolyte. We bypass this issue by designing a zero-gap electrolyzer configuration based on the integration of cation exchange membrane and bipolar membrane assemblies, which protects stable DSS operation against the precipitates and corrosion in the absence of additional supporting electrolytes.

View Article and Find Full Text PDF

In this study, a molecularly imprinted electrochemical sensor (MIECS) was constructed based on the combination of graphene quantum dots-gold nanoparticles (GQDs-AuNPs), molecular imprinting polymer (MIP), and electrochemical technology for the ultra-sensitive detection of 17β-estradiol (E). GQDs-AuNPs were synthesized and modified on the surface of glassy carbon electrodes (GCE). Safranine T was used as the functional monomer and E was the template molecule for self-assembly and electropolymerization, thus generating an MIP film on the electrode surface.

View Article and Find Full Text PDF

Pt/IrO enables selective electrochemical C-H chlorination at high current.

Nat Commun

January 2025

Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Republic of Singapore.

Employing electrochemistry for the selective functionalization of liquid alkanes allows for sustainable and efficient production of high-value chemicals. However, the large potentials required for C(sp)-H bond functionalization and low water solubility of such alkanes make it challenging. Here we discover that a Pt/IrO electrocatalyst with optimized Cl binding energy enables selective generation of Cl free radicals for C-H chlorination of alkanes.

View Article and Find Full Text PDF

Dual-mode ultrasensitive detection of acute leukemia gene Pax-5a based on smart DNA programmed dendrimer.

Biosens Bioelectron

December 2024

State Key Laboratory for Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, PR China.

Accurate and sensitive detection of Pax-5a gene is the basis of early diagnosis and prediction of acute leukemia. This research aims to develop a universal dual-mode sensing method enables ultrasensitive gene detection based on smart control of DNA amplification by nucleic acid beacons e to form programmed dendrimer. The Pax-5a target gene triggers the opening of smart gate hairpin probe (Hp), exposing the stem sequence as the primer to bind with padlock probe for rolling circle amplification (RCA).

View Article and Find Full Text PDF

Laser scribed proton exchange membranes for enhanced fuel cell performance and stability.

Nat Commun

December 2024

Department of Chemical Engineering, Electrochemical Innovation Lab, University College London, London, UK.

High-temperature proton exchange membrane fuel cells (HT-PEMFCs) offer solutions to challenges intrinsic to low-temperature PEMFCs, such as complex water management, fuel inflexibility, and thermal integration. However, they are hindered by phosphoric acid (PA) leaching and catalyst migration, which destabilize the critical three-phase interface within the membrane electrode assembly (MEA). This study presents an innovative approach to enhance HT-PEMFC performance through membrane modification using picosecond laser scribing, which optimises the three-phase interface by forming a graphene-like structure that mitigates PA leaching.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!