Background: Previous studies have indicated a negative correlation between GRK2 expression and pain development and transmission. Here, we investigated whether G-protein-coupled receptor kinase 2 (GRK2) was involved in regulating diabetic mechanical hyperalgesia (DMH).
Methods: The adeno-associated viral vectors containing the GRK2 gene (AAV-GRK2) were used to up-regulate GRK2 protein expression. The expression of GRK2 and exchange protein directly activated by cyclic adenosine monophosphate 1 (Epac1) in the dorsal root ganglion (DRG) of lumbar 4-6 was detected via immunoblotting and immunohistochemistry, and the transfection of the GRK2 gene was detected by immunofluorescence.
Results: Low levels of GRK2 were able to sustain STZ-induced pain in DMH rats. Intrathecal injection of AAV-GRK2 vector up-regulated GRK2 expression, providing pain rain to rats with DMH. With an increase in DMH duration, there was a decrease in paw withdrawal threshold (PWT) value, aggravating the pain, resulting in a decreasing pattern in GRK2 protein expression over time, whereas Epac1 protein expression showed an opposite trend.
Conclusion: GRK2 expression regulated DMH progression and is expected to play a role in the development of targeted therapy for DMH. GRK2 and Epac1 expressions play a vital role in maintaining pain in DMH rats.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ejp.1819 | DOI Listing |
The extravasation of polymorphonuclear neutrophils (PMNs) is a critical component of the innate immune response that involves transendothelial migration (TEM) and interstitial migration. TEM-mediated interactions between PMNs and vascular endothelial cells (VECs) trigger a cascade of biochemical and mechanobiological signals whose effects on interstitial migration are currently unclear. To address this question, we cultured human VECs on a fibronectin-treated transwell insert to model the endothelium and basement membrane, loaded PMN-like differentiated HL60 (dHL-60) cells in the upper chamber of the insert, and collected the PMNs that crossed the membrane-supported monolayer from the lower chamber.
View Article and Find Full Text PDFCell Biol Toxicol
November 2024
Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Center of Rheumatoid Arthritis of Anhui Medical University, Hefei, 230032, China.
Background: The present study investigated the function of G protein-coupled receptor kinase 2 (GRK2) in acute liver injury (ALI) by cisplatin, and investigated the protective effect of pharmacological inhibition of GRK2.
Methods: ALI models were generated in global adult hemizygous (ALI-Grk2) mice and wild-type (WT) mice. Liver biochemistry parameters and histopathology were used to evaluate the severity of ALI and the protective effect of pharmacological inhibition of GRK2.
BMC Med Genomics
November 2024
College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
Numerous studies have demonstrated the involvement of messenger RNAs (mRNAs) and non-coding RNAs, including long non-coding RNAs (lncRNA), circular RNAs (circRNAs) and microRNA (miRNAs), in gouty arthritis onset; however, the regulatory mechanism has not yet been elucidated. Here, we applied whole-transcriptome sequencing to identify the differentially expressed circRNAs, lncRNAs, miRNAs and mRNAs between the gout patients and normal people, and constructed co-regulated networks of circRNAs and lncRNAs according to the competitive endogenous RNA (ceRNA) theory for gouty arthritis onset to improve our understanding of the pathogenesis of this disease. The most significant finding of this study is the co-regulated ceRNA network of circRNAs and lncRNAs in gouty arthritis.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
October 2024
Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, 550004 Guiyang, Guizhou, China.
Background: A long non-coding RNAs (LncRNAs) called antisense noncoding RNA in the INK4 locus (), has emerged as substantial regulators of cell survival in acute myeloid leukemia (AML). However, its speciffc and potential mechanism is uncertain in AML. In this research, we investigated the role of in cell proliferation, apoptosis, and the underlying mechanism in AML cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!