This article addresses an adaptive neural network (NN) constraint control scheme for a class of fractional-order uncertain nonlinear nonstrict-feedback systems with full-state constraints and input saturation. The radial basis function (RBF) NNs are used to deal with the algebraic loop problem from the nonstrict-feedback formation based on the approximation structure. In order to overcome the problem of input saturation nonlinearity, a smooth nonaffine function is applied to approach the saturation function. To arrest the violation of full-state constraints, the barrier Lyapunov function (BLF) is introduced in each step of the backstepping procedure. By using the fractional-order Lyapunov stability theory and the given conditions, it proves that all the states remain in their constraint bounds, the tracking error converges to a bounded compact set containing the origin, and all signals in the closed-loop system are ensured to be bounded. Finally, the effectiveness of the proposed control scheme is verified by two simulation examples.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TNNLS.2021.3082984DOI Listing

Publication Analysis

Top Keywords

full-state constraints
12
input saturation
12
adaptive neural
8
neural network
8
class fractional-order
8
systems full-state
8
constraints input
8
control scheme
8
network control
4
control class
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!