This article addresses an adaptive neural network (NN) constraint control scheme for a class of fractional-order uncertain nonlinear nonstrict-feedback systems with full-state constraints and input saturation. The radial basis function (RBF) NNs are used to deal with the algebraic loop problem from the nonstrict-feedback formation based on the approximation structure. In order to overcome the problem of input saturation nonlinearity, a smooth nonaffine function is applied to approach the saturation function. To arrest the violation of full-state constraints, the barrier Lyapunov function (BLF) is introduced in each step of the backstepping procedure. By using the fractional-order Lyapunov stability theory and the given conditions, it proves that all the states remain in their constraint bounds, the tracking error converges to a bounded compact set containing the origin, and all signals in the closed-loop system are ensured to be bounded. Finally, the effectiveness of the proposed control scheme is verified by two simulation examples.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TNNLS.2021.3082984 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!