Introduction of a gene to mesenchymal stem cells (MSCs) is a well-known strategy to purposely manipulate the cell fate and further enhance therapeutic performance in cell-based therapy. Viral and chemical approaches for gene delivery interfere with differentiation potential. Although microinjection as a physical delivery method is commonly used for transfection, its influence on MSC cell fate is not fully understood. The current study aimed to evaluate the effects of four nonviral gene delivery methods on stem cell multi-potency. The four delivery methods are robotic microinjection, polyethylenimine (PEI), cationic liposome (cLipo), and calcium phosphate nanoparticles (CaP). Among the four methods, microinjection has exhibited the highest transfection efficiency of ∼60%, while the three others showed lower efficiency of 10-25%. Robotic microinjection preserved fibroblast-like cell morphology, stress fibre intactness, and mature focal adhesion complex, while PEI caused severe cytotoxicity. No marked differentiation bias was observed after microinjection and cLipo treatment. By contrast, CaP-treated MSCs exhibited excessive osteogenesis, while PEI-treated MSCs showed excessive adipogenesis. Robotic microinjection system was used to inject the CRISPR/Cas9-encoding plasmid to knock out PPARγ gene in MSCs, and the robotic microinjection did not interfere with PPARγ function in differentiation commitment. Meanwhile, the bias in osteo-adipogenic differentiation exhibited in CaP and PEI-treated MSCs after PPARγ knockout via chemical carriers. Our results indicate that gene delivery vehicles variously disturb MSCs differentiation and interfere with exogenous gene function. Our findings further suggest that robotic microinjection offers a promise of generating genetically modified MSCs without disrupting stem cell multi-potency and therapeutic gene function.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TBME.2021.3087129 | DOI Listing |
PNAS Nexus
December 2024
Department of Mechanical Engineering, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel.
Rose prickles are small-scale, plant-based anchoring tools of multifunctional biomechanical roles, combining physical defense against herbivores and growth support on surrounding objects. By employing multiscale structural observations, nanomechanical characterizations, and finite-element simulations, we unveil that the dog rose ( Linnaeus) prickle incorporates structural-mechanical modifications at different length scales, resulting in macroscopic stress-locking effects that provide the prickle extreme damage-resistant capabilities and secure its functional form against catastrophic failures. These functional design strategies, unique to plant-based biomechanical tools, may promote futuristic micro-engineered anchoring platforms for micro-robotics locomotion, biomedical microinjection, and micromechanical systems.
View Article and Find Full Text PDFSci Robot
October 2024
Program in Molecular Medicine, Hospital for Sick Children, Toronto, ON, Canada.
Arrhythmogenic cardiomyopathy (ACM) is a leading cause of sudden cardiac death among young adults. Aberrant gap junction remodeling has been linked to disease-causative mutations in plakophilin-2 (). Although gap junctions are a key therapeutic target, measurement of gap junction function in preclinical disease models is technically challenging.
View Article and Find Full Text PDFNat Commun
October 2024
Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada.
The nematode Caenorhabditis elegans is widely employed as a model organism to study basic biological mechanisms. However, transgenic C. elegans are generated by manual injection, which remains low-throughput and labor-intensive, limiting the scope of approaches benefitting from large-scale transgenesis.
View Article and Find Full Text PDFMicromachines (Basel)
March 2024
Institute of Robotics and Automatic Information System, The Tianjin Key Laboratory of Intelligent Robotics, Nankai University, Tianjin 300350, China.
Cell models play a crucial role in analyzing the mechanical response of cells and quantifying cellular damage incurred during micromanipulation. While traditional models can capture the overall mechanical behavior of cells, they often lack the ability to discern among distinct cellular components. Consequently, by employing dissipative particle dynamics, this study constructed a triangular network-like representation of the cell membrane along with cross-linked cytoskeletal chains.
View Article and Find Full Text PDFSensors (Basel)
March 2024
National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Engineering Research Center of Trusted Behavior Intelligence, Ministry of Education, Tianjin Key Laboratory of Intelligent Robotics, Institute of Robotics and Automatic Information System, Nankai University, Tianjin 300350, China.
Microinjection is usually applied to the treatment of some retinal disorders, such as retinal vein cannulation and displaced submacular hemorrhage. Currently, the microinjection procedure is usually performed by using the viscous fluid control of a standard vitrectomy system, which applies a fixed air pressure through foot pedal activation. The injection process with the fixed pressure is uncontrollable and lacks feedback, the high flow rate of the injected drug may cause damage to the fundus tissue.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!