Heat capacity is an invaluable quantity in condensed matter physics and yet has been completely inaccessible in two-dimensional (2D) van der Waals (vdW) materials, owing to their ultrafast thermal relaxation times and the lack of suitable nanoscale thermometers. Here, we demonstrate a novel thermal relaxation calorimetry scheme that allows the first measurements of the electronic heat capacity of graphene. It is enabled by combining a radio frequency Johnson noise thermometer, which can measure the electronic temperature with a sensitivity of ∼20 mK/Hz, and a photomixed optical heater that modulates with a frequency of up to Ω = 0.2 THz. This allows record sensitive measurements of the electronic heat capacity < 10 J/K and the fastest measurement of electronic thermal relaxation time < 10 s yet achieved by a calorimeter. These features advance heat capacity metrology into the realm of nanoscale and low-dimensional systems and provide an avenue for the investigation of their thermodynamic quantities.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.1c01553DOI Listing

Publication Analysis

Top Keywords

heat capacity
20
measurements electronic
12
electronic heat
12
thermal relaxation
12
capacity graphene
8
electronic
5
heat
5
capacity
5
ultrasensitive calorimetric
4
calorimetric measurements
4

Similar Publications

Coral reefs worldwide are threatened by increasing ocean temperatures because of the sensitivity of the coral-algal symbiosis to thermal stress. Reef-building corals form symbiotic relationships with dinoflagellates (family Symbiodiniaceae), including those species which acquire their initial symbiont complement predominately from their parents. Changes in the composition of symbiont communities, through the mechanisms of symbiont shuffling or switching, can modulate the host's thermal limits.

View Article and Find Full Text PDF

Lanthanide materials with a 4f electron configuration (S) offer an exciting system for realizing multiple addressable spin states for qubit design. While the S ground state of 4f free ions displays an isotropic character, breaking degeneracy of this ground state and excited states can be achieved through local symmetry of the lanthanide and the choice of ligands. This makes Eu attractive as it mirrors Gd in exhibiting the S ground state, capable of seven spin-allowed transitions.

View Article and Find Full Text PDF

Advanced adiabatic compressed air energy storage systems dynamic modelling: Impact of the heat storage device.

Heliyon

January 2025

IFP Energies nouvelles, 1 et 4 avenue de Bois Préau, 92852, Rueil-Malmaison, France.

Advanced Adiabatic Compressed Air Energy Storage (AACAES) is a technology for storing energy in thermomechanical form. This technology involves several equipment such as compressors, turbines, heat storage capacities, air coolers, caverns, etc. During charging or discharging, the heat storage and especially the cavern will induce transient behavior of operating points, notably temperature, pressure, and volume flow.

View Article and Find Full Text PDF

A low-temperature ionic liquid system for topochemical synthesis of Si nanospheres for high-performance lithium-ion batteries.

Dalton Trans

January 2025

State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.

Silicon is utilized as a functional material in various fields such as semiconductors, bio-medicine, and solar energy. To prepare Si materials, researchers have proposed methods including carbothermal reduction, hydrothermal reduction, and magnesiothermal reduction, but these strategies often involve high temperatures or unwanted by-products. Herein, we present a low-temperature ionic liquid reduction system to prepare Si nanospheres based on 1-butyl-3-methylimidazolium chloride-aluminum chloride ([Bmim]Cl-AlCl).

View Article and Find Full Text PDF

Selective Crystallization Separation of Uranium(VI) Complexes from Lanthanides.

Inorg Chem

January 2025

State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China.

The limited availability of uranium (U) resources poses significant challenges to the advancement of nuclear energy. Recycling uranium from spent fuel is critical, but the coexistence of lanthanides (Ln) complicates the extraction process significantly. Here, we present an N/O ligand, ()-'-(pyridin-2-ylmethylene) picolinohydrazide (), designed for the selective recovery of U(VI) over Ln(III/IV) in acidic environments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!