GABA type A receptors (GABARs) belong to the pentameric ligand-gated ion channel (pLGIC) family and play a crucial role in mediating inhibition in the adult mammalian brain. Recently, a major progress in determining the static structure of GABARs was achieved, although precise molecular scenarios underlying conformational transitions remain unclear. The ligand binding sites (LBSs) are located at the extracellular domain (ECD), very distant from the receptor gate at the channel pore. GABAR gating is complex, comprising three major categories of transitions: openings/closings, preactivation, and desensitization. Interestingly, mutations at, e.g., the ligand binding site affect not only binding but often also more than one gating category, suggesting that structural determinants for distinct conformational transitions are shared. Gielen and co-workers (2015) proposed that the GABAR desensitization gate is located at the second and third transmembrane segment. However, studies of our and others' groups indicated that other parts of the GABAR macromolecule might be involved in this process. In the present study, we asked how selected point mutations (βG254V, αG258V, αL300V, and βL296V) at the M2 and M3 transmembrane segments affect gating transitions of the αβγ GABAR. Using high resolution macroscopic and single-channel recordings and analysis, we report that these substitutions, besides affecting desensitization, also profoundly altered openings/closings, having some minor effect on preactivation and agonist binding. Thus, the M2 and M3 segments primarily control late gating transitions of the receptor (desensitization, opening/closing), providing a further support for the concept of diffuse gating mechanisms for conformational transitions of GABAR.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8291490 | PMC |
http://dx.doi.org/10.1021/acschemneuro.1c00151 | DOI Listing |
Nanomaterials (Basel)
December 2024
High-Power Converter Systems (HLU), Technical University of Munich (TUM), 80333 Munich, Germany.
In this paper, a new label-free DNA nanosensor based on a top-gated (TG) metal-ferroelectric-metal (MFM) graphene nanoribbon field-effect transistor (TG-MFM GNRFET) is proposed through a simulation approach. The DNA sensing principle is founded on the dielectric modulation concept. The computational method employed to evaluate the proposed nanobiosensor relies on the coupled solutions of a rigorous quantum simulation with the Landau-Khalatnikov equation, considering ballistic transport conditions.
View Article and Find Full Text PDFNeuron
December 2024
State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center of Biological Structure, Tsinghua University, Beijing 100084, China; School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China. Electronic address:
PIEZO1 is a mechanically activated cation channel that undergoes force-induced activation and inactivation. However, its distinct structural states remain undefined. Here, we employed an open-prone PIEZO1-S2472E mutant to capture an intermediate open structure.
View Article and Find Full Text PDFNat Struct Mol Biol
December 2024
Department of Physiology, University of California, San Francisco, San Francisco, CA, USA.
Calcium (Ca)-activated ion channels and lipid scramblases in the transmembrane protein 16 (TMEM16) family are structurally related to mechanosensitive ion channels in the TMEM63 and transmembrane channel-like (TMC) families. Members of this structurally related superfamily share similarities in gating transitions and serve a wide range of physiological functions, which is evident from their disease associations. The TMEM16, TMEM63 and TMC families include members with important functions in the cell membrane and/or intracellular organelles such as the endoplasmic reticulum, membrane contact sites, endosomes and lysosomes.
View Article and Find Full Text PDFJ Assist Reprod Genet
December 2024
Seattle Reproductive Medicine, Suite 400, Seattle, WA, 98104, USA.
Contemporary fertility care has matured from a restricted, special interest in women's health care where success sometimes made magazine covers to a well-honed start-to-finish process with ever-improving success rates and an ever-expanding panoply of treatment options. Innovations in both lab and clinic have been exponential and game changing. The specialty now finds itself in the enviable position of an extensive menu of highly successful treatment options but a complicated set of circumstances of access to these options.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2024
Department of Biochemistry and Biophysics, Stockholm University, Stockholm 10691, Sweden.
Photosystem II (PSII) catalyzes light-driven water oxidation that releases dioxygen into our atmosphere and provides the electrons needed for the synthesis of biomass. The catalysis occurs in the oxygen-evolving oxo-manganese-calcium (MnOCa) cluster that drives the oxidation and deprotonation of substrate water molecules leading to the O formation. However, despite recent advances, the mechanism of these reactions remains unclear and much debated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!