All-Polymer Solar Cells Approaching 12% Efficiency with a New π-Conjugated Polymer Donor Enabled by a Nonhalogenated Solvent Process.

ACS Appl Mater Interfaces

Department of Chemistry Education, Graduate Department of Chemical Materials, Institute for Plastic Information and Energy Materials, Sustainable Utilization of Photovoltaic Energy Research Center (ERC), Pusan National University, Busan 46241, Republic of Korea.

Published: June 2021

High efficiency and nonhalogenated solvent processing are important issues for commercial application of all-polymer solar cells (all-PSCs). In this regard, we increased the photovoltaic performance of all-PSCs to a benchmark power conversion efficiency (PCE) of 11.66% by manipulating the pre-aggregation of a new π-conjugated polymer donor (Nap-SiBTz) using toluene as a solvent. This use of Nap-SiBTz enhanced the absorption coefficient (λ = 9.30 × 10 cm), increased charge carrier mobility, suppressed trap-assisted recombination, improved bulk heterojunction morphology, and resulted in high PCEs of all-PSCs with an active layer thickness of 200 nm. To overcome severe charge recombination and energy losses, a 1-phenylnapthalene additive was used to achieve a well-ordered microstructure and molecular packing that inherently improved the device performances. The resulting encapsulation-free devices exhibited good ambient and thermal stabilities. The results of this study augur well for the future of the roll-to-roll production of all-PSCs.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.1c05921DOI Listing

Publication Analysis

Top Keywords

all-polymer solar
8
solar cells
8
π-conjugated polymer
8
polymer donor
8
nonhalogenated solvent
8
cells approaching
4
approaching 12%
4
12% efficiency
4
efficiency π-conjugated
4
donor enabled
4

Similar Publications

Construction of Linear Tetramer-Type Acceptors for High-Efficiency and High-Stability Organic Solar Cells.

Angew Chem Int Ed Engl

January 2025

School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, China.

Thanks to the development of non-fullerene acceptor (NFA) materials, the photovoltaic conversion efficiency (PCE) of organic solar cells (OSCs) has exceeded 20 %, which has met the requirements for commercialisation. In the current stage, the main focus is to balance the performance and stability. It has been shown that all-polymer formulation can improve device stability, however, PCE is not in satifsfaction, and the batch-to-batch variation leads to quality control issues.

View Article and Find Full Text PDF

New Polymeric Acceptors Based on Benzo[1,2-b:4,5-b'] Difuran Moiety for Efficient All-Polymer Solar Cells.

Macromol Rapid Commun

December 2024

Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.

In order to realize high-performance bulk-heterojunction (BHJ) all-polymer solar cells, achieving appropriate aggregation and moderate miscibility of the polymer blends is one critical factor. Herein, this study designs and synthesizes two new polymer acceptors (Ps), namely PYF and PYF-Cl, containing benzo[1,2-b:4,5-b'] difuran (BDF) moiety with/without chlorine atoms on the thiophene side groups. Thanks to the preferred planar structure and high electronegativity of the BDF units, the resultant Ps generate strong intermolecular interactions and π-π stacking in both the neat and blend films.

View Article and Find Full Text PDF

understanding on the formation of fibrillar morphology in green solvent processed all-polymer solar cells.

Natl Sci Rev

December 2024

Department of Electrical and Electronic Engineering, Research Institute for Smart Energy (RISE), Photonic Research Institute (PRI), The Hong Kong Polytechnic University, Hong Kong 999077, China.

Article Synopsis
  • Researchers are investigating solid additive engineering to improve the efficiency of all-polymer solar cells (all-PSCs) for various applications.
  • The study focuses on how naphthalene-derived solid additives can help reduce polymer aggregate formation during the initial spin-coating stage, allowing better structure formation for higher power conversion efficiency (PCE).
  • A new ternary all-polymer system based on these findings has been developed, achieving top-tier PCEs in both small and large device areas while maintaining good stability.
View Article and Find Full Text PDF

Synergistic Multimodal Energy Dissipation Enhances Certified Efficiency of Flexible Organic Photovoltaics beyond 19.

Adv Mater

December 2024

College of Chemistry and Chemical Engineering/ Film Energy Chemistry for Jiangxi Provincial Key Laboratory (FEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China.

All-polymer organic solar cells (OSCs) have shown unparalleled application potential in the field of flexible wearable electronics in recent years due to the excellent mechanical and photovoltaic properties. However, the small molecule acceptors after polymerization in still retain some mechanical and aggregation properties of the small molecule, falling short of the ductility requirements for flexible devices. Here, based on the multimodal energy dissipation theory, the mechanical and photovoltaic properties of flexible devices are co-enhanced by adding the thermoplastic elastomer material (polyurethane, PU) to the PM6:PBQx-TF:PY-IT-based active layer films.

View Article and Find Full Text PDF

The performance of all-polymer solar cells is often enhanced by incorporating solvent additives during solution processing. In particular, blends based on the model all-polymer system PBDBT:N2200 have been shown to have increased short-circuit current and fill factor when processed with dilute diiodooctane (DIO). However, the morphological mechanism that drives the increase in performance is often not well understood due to limitations in common characterization techniques.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!