High efficiency and nonhalogenated solvent processing are important issues for commercial application of all-polymer solar cells (all-PSCs). In this regard, we increased the photovoltaic performance of all-PSCs to a benchmark power conversion efficiency (PCE) of 11.66% by manipulating the pre-aggregation of a new π-conjugated polymer donor (Nap-SiBTz) using toluene as a solvent. This use of Nap-SiBTz enhanced the absorption coefficient (λ = 9.30 × 10 cm), increased charge carrier mobility, suppressed trap-assisted recombination, improved bulk heterojunction morphology, and resulted in high PCEs of all-PSCs with an active layer thickness of 200 nm. To overcome severe charge recombination and energy losses, a 1-phenylnapthalene additive was used to achieve a well-ordered microstructure and molecular packing that inherently improved the device performances. The resulting encapsulation-free devices exhibited good ambient and thermal stabilities. The results of this study augur well for the future of the roll-to-roll production of all-PSCs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.1c05921 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, China.
Thanks to the development of non-fullerene acceptor (NFA) materials, the photovoltaic conversion efficiency (PCE) of organic solar cells (OSCs) has exceeded 20 %, which has met the requirements for commercialisation. In the current stage, the main focus is to balance the performance and stability. It has been shown that all-polymer formulation can improve device stability, however, PCE is not in satifsfaction, and the batch-to-batch variation leads to quality control issues.
View Article and Find Full Text PDFMacromol Rapid Commun
December 2024
Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.
In order to realize high-performance bulk-heterojunction (BHJ) all-polymer solar cells, achieving appropriate aggregation and moderate miscibility of the polymer blends is one critical factor. Herein, this study designs and synthesizes two new polymer acceptors (Ps), namely PYF and PYF-Cl, containing benzo[1,2-b:4,5-b'] difuran (BDF) moiety with/without chlorine atoms on the thiophene side groups. Thanks to the preferred planar structure and high electronegativity of the BDF units, the resultant Ps generate strong intermolecular interactions and π-π stacking in both the neat and blend films.
View Article and Find Full Text PDFNatl Sci Rev
December 2024
Department of Electrical and Electronic Engineering, Research Institute for Smart Energy (RISE), Photonic Research Institute (PRI), The Hong Kong Polytechnic University, Hong Kong 999077, China.
Adv Mater
December 2024
College of Chemistry and Chemical Engineering/ Film Energy Chemistry for Jiangxi Provincial Key Laboratory (FEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China.
All-polymer organic solar cells (OSCs) have shown unparalleled application potential in the field of flexible wearable electronics in recent years due to the excellent mechanical and photovoltaic properties. However, the small molecule acceptors after polymerization in still retain some mechanical and aggregation properties of the small molecule, falling short of the ductility requirements for flexible devices. Here, based on the multimodal energy dissipation theory, the mechanical and photovoltaic properties of flexible devices are co-enhanced by adding the thermoplastic elastomer material (polyurethane, PU) to the PM6:PBQx-TF:PY-IT-based active layer films.
View Article and Find Full Text PDFAdv Mater
December 2024
Materials Science and Engineering, Stanford University, 496 Lomita Mall, Stanford, CA, 94305, USA.
The performance of all-polymer solar cells is often enhanced by incorporating solvent additives during solution processing. In particular, blends based on the model all-polymer system PBDBT:N2200 have been shown to have increased short-circuit current and fill factor when processed with dilute diiodooctane (DIO). However, the morphological mechanism that drives the increase in performance is often not well understood due to limitations in common characterization techniques.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!