The modern data on RNA transport in the cells of early embryos are reviewed. A special attention is paid to the specificity of posttranscriptional mRNA transformation and the control of its transport from the nucleus to the cytoplasm. These processes in the embryonic cell differ from those in the adult one: in the embryos the rate of transport of mRNA molecules in the cytoplasm increases with the development (with the onset of gastrulation); the process of polyadenylation in some mRNA molecules takes place in the cytoplasm rather than in the nucleus; besides, the high molecular weight mRNA fractions are localized in the cytoplasm (in the adult cells they are found only in the nucleus). A study of the mechanisms of control of mRNA transport from the nucleus in the cytoplasm has shown that the now existing concepts on the participation of nucleolus, as well as of translation mechanisms in the control of mRNA transport appear to be true only for the differentiated cells and cannot be used to account for the control of mRNA transport in the embryos. For the embryonic cells the hypothesis on the selection of populations of mRNA molecules at the level of transport for their entry into the cytoplasm holds true. The patterns of RNA transport during the cell division are also considered, with respect to the phenomenon of migration of some RNA populations synthesized prior to the onset of division in the nuclei of daughter cells.
Download full-text PDF |
Source |
---|
Int J Biol Macromol
January 2025
College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University; Yangling, Shaanxi 712100, China. Electronic address:
Biofilms are complex adhesive structures that establish chronic infection and allow robust protection from external stressors such as antibiotics. Cellulose as one of the compositions of bacteria biofilm which protect bacteria from stress, host immune responses and resistance to antibiotics. Bacterial stress responses are regulated via guanosine pentaphosphate and tetraphosphate (p)ppGpp.
View Article and Find Full Text PDFMol Cell
January 2025
Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030 Vienna, Austria; University of Vienna, Max Perutz Labs, Department of Microbiology, Immunobiology and Genetics, Dr.-Bohr-Gasse 9, 1030 Vienna, Austria. Electronic address:
The fidelity of immune responses depends on timely controlled and selective mRNA degradation that is largely driven by RNA-binding proteins (RBPs). It remains unclear whether stochastic or directed processes govern the selection of an individual mRNA molecule for degradation. Using human and mouse cells, we show that tristetraprolin (TTP, also known as ZFP36), an essential anti-inflammatory RBP, destabilizes target mRNAs via a hierarchical molecular assembly.
View Article and Find Full Text PDFPhytomedicine
January 2025
Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Changle West Street 15, Xi'an, Shaanxi, 710032, China. Electronic address:
Background: The pathogenesis of neuropathic pain is complex and lacks effective clinical treatment strategies. Medical plants and herbal extracts from traditional Chinese medicine with multi-target comprehensive effects have attracted great attention from scientists.
Purpose: To investigate the pharmacological active components and mechanism underlying the anti-neuralgia effect of classic analgesic formulas Duhuo Jisheng Mixture (DJM).
Int Immunopharmacol
January 2025
Health Science Center, Ningbo University, Ningbo, China. Electronic address:
Myasthenia gravis (MG) is a T cell-dependent, B cell-mediated disorder strongly associated with antigen presentation by dendritic cells (DCs). In MG, mucosal tolerance is linked to increased expression of TGF-β mRNA in monocytes. Additionally, monocytic myeloid-derived suppressor cells (M-MDSCs) exhibit negative immunomodulatory effects by suppressing autoreactive T and B cells.
View Article and Find Full Text PDFPharmaceutics
January 2025
Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.
Background/objectives: Leukocytes play a significant role in both acute kidney injury (AKI) and chronic kidney disease (CKD), contributing to pathogenesis and tissue damage. The process of leukocyte infiltration into the inflamed tissues is mediated by the interactions between the leukocytes and cell adhesion molecules (CAMs, i.e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!