Sulfur chemistry based on solid-liquid dissolution-deposition route inevitably encounters shuttle of lithium polysulfides, its parasitic interaction with lithium (Li) anode and flood electrolyte environment. The sulfurized pyrolyzed poly(acrylonitrile) (S@pPAN) cathode favors solid-solid conversion mechanism in carbonate ester electrolytes but fails to pair high-capacity Li anode. Herein, we rationally design a cation-solvent fully coordinated ether electrolyte to simultaneously resolve the problems of both Li anode and S@pPAN cathode. Raman spectroscopy reveals a highly suppressed solvent activity and a cation-solvent fully coordinated structure (molar ratio 1:1). Consequently, Li electrodeposit evolves into round-edged morphology, LiF-rich interphase, and high reversibility. Moreover, S@pPAN cathode inherits a neat solid-phase redox reaction and fully eliminated the dissolution of lithium polysulfides. Finally, we harvest a long-life Li-S@pPAN pouch cell with slight Li metal excessive (0.4 time) and ultra-lean electrolyte design (1 μL mg ), delivering 394 Wh kg energy density based on electrodes and electrolyte mass.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202106788DOI Listing

Publication Analysis

Top Keywords

cation-solvent fully
12
fully coordinated
12
s@ppan cathode
12
solid-solid conversion
8
lithium polysulfides
8
electrolyte
5
designing cation-solvent
4
fully
4
coordinated electrolyte
4
electrolyte high-energy-density
4

Similar Publications

Sulfur chemistry based on solid-liquid dissolution-deposition route inevitably encounters shuttle of lithium polysulfides, its parasitic interaction with lithium (Li) anode and flood electrolyte environment. The sulfurized pyrolyzed poly(acrylonitrile) (S@pPAN) cathode favors solid-solid conversion mechanism in carbonate ester electrolytes but fails to pair high-capacity Li anode. Herein, we rationally design a cation-solvent fully coordinated ether electrolyte to simultaneously resolve the problems of both Li anode and S@pPAN cathode.

View Article and Find Full Text PDF

Solvation dynamics of Li+ and Cl- ions in liquid methanol.

J Phys Chem B

April 2005

Laboratorio di Spettroscopia Molecolare, Dipartimento di Chimica, Università di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino, Firenze, Italy.

Car-Parrinello molecular dynamics simulations have been performed on Li(+) and Cl(-) in fully deuterated liquid methanol. The results have been compared with available experimental and theoretical data. It has been found that the lithium cation has a stable tetrahedral coordination, whereas the chloride anion presents an average coordination number of 3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!