Duchenne muscular dystrophy (DMD) patients, having mutations of the DMD gene, present with a range of neuropsychiatric disorders, in addition to the quintessential muscle pathology. The neurobiological basis remains poorly understood because the contributions of different DMD gene products (dystrophins) to the different neural networks underlying such symptoms are yet to be fully characterised. While full-length dystrophin clusters in inhibitory synapses, with inhibitory neurotransmitter receptors, the precise subcellular expression of truncated DMD gene products with excitatory synapses remains unresolved. Furthermore, inflammation, involving P2X purinoceptor 7 (P2RX7) accompanies DMD muscle pathology, yet any association with brain dystrophins is yet to be established. The aim of this study was to investigate the comparative expression of different dystrophins, alongside ionotropic glutamate receptors and P2RX7s, within the cerebellar circuitry known to express different dystrophin isoforms. Immunoreactivity for truncated DMD gene products was targeted to Purkinje cell (PC) distal dendrites adjacent to, or overlapping with, signal for GluA1, GluA4, GluN2A, and GluD2 receptor subunits. P2X7R immunoreactivity was located in Bergmann glia profiles adjacent to PC-dystrophin immunoreactivity. Ablation of all DMD gene products coincided with decreased mRNA expression for Gria2, Gria3, and Grin2a and increased GluD2 immunoreactivity. Finally, dystrophin-null mice showed decreased brain mRNA expression of P2rx7 and several inflammatory mediators. The data suggest that PCs target different dystrophin isoforms to molecularly and functionally distinct populations of synapses. In contrast to muscle, dystrophinopathy in brain leads to the dampening of the local immune system.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9418305 | PMC |
http://dx.doi.org/10.1007/s10571-021-01110-6 | DOI Listing |
Pathophysiology
January 2025
Postgraduate Program in Health Sciences, Faculty of Medicine of Jundiaí (FMJ), Jundiaí 13202-550, Brazil.
Duchenne muscular dystrophy (DMD) is a genetic disease characterized by a lack of dystrophin caused by mutations in the DMD gene, and some minor cases are due to decreased levels of dystrophin, leading to muscle weakness and motor impairment. Creatine supplementation has demonstrated several benefits for the muscle, such as increased strength, enhanced tissue repair, and improved ATP resynthesis. This preliminary study aimed to investigate the effects of creatine on the gastrocnemius muscle in dystrophy muscle (MDX) and healthy C57BL/10 mice.
View Article and Find Full Text PDFMol Neurodegener
January 2025
Department of Neurobiology and Behavior, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA, 92697-4545, USA.
Background: Apolipoprotein E ε4 (APOE4) is the strongest genetic risk factor for late-onset Alzheimer's disease (LOAD). A recent case report identified a rare variant in APOE, APOE3-R136S (Christchurch), proposed to confer resistance to autosomal dominant Alzheimer's Disease (AD). However, it remains unclear whether and how this variant exerts its protective effects.
View Article and Find Full Text PDFNature
January 2025
Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, MO, USA.
Personalized antisense oligonucleotides (ASOs) have achieved positive results in the treatment of rare genetic disease. As clinical sequencing technologies continue to advance, the ability to identify patients with rare disease harbouring pathogenic genetic variants amenable to this therapeutic strategy will probably improve. Here we describe a scalable platform for generating patient-derived cellular models and demonstrate that these personalized models can be used for preclinical evaluation of patient-specific ASOs.
View Article and Find Full Text PDFMuscle Nerve
January 2025
Department of Anatomy, Federal University of Alfenas (UNIFAL-MG), Alfenas, Brazil.
Introduction/aims: Duchenne muscular dystrophy (DMD) is caused by pathogenic variants in the DMD gene, making muscle fibers susceptible to contraction-induced membrane damage. Given the potential beneficial action of cannabidiol (CBD), we evaluated the in vitro effect of full-spectrum CBD oil on the viability of dystrophic muscle fibers and the in vivo effect on myopathy of the mdx mouse, a DMD model.
Methods: In vitro, dystrophic cells from the mdx mouse were treated with full-spectrum CBD oil and assessed with cell viability and cytotoxic analyses.
Facioscapulohumeral muscular dystrophy type 1 (FSHD1) and Becker muscular dystrophy (BMD) are distinct disorders caused by different genetic variations and exhibiting different inheritance patterns. The co-occurrence of both conditions within the same family is rare. In this case report, the proband was a 10 year-old boy who presented with eye and mouth orbicular muscles, shoulder and proximal upper and lower limbs weakness.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!