Dexmedetomidine as an Analgesic Agent with Neuroprotective Properties: Experimental and Clinical Aspects.

J Pain Palliat Care Pharmacother

Hooman Bozorgi is with the Department of Pharmacology, Research Center of Physiology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran. Melika Zamani is with the Department of Pharmacology, School of Pharmacy, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran/Panzdah-e-Khordad Hospital, Mahdishahr, Iran. Ehsan Motaghi is with the Department of Physiology and Pharmacology, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran. Majid Eslami is with Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran.

Published: September 2021

Dexmedetomidine (Dexdor or Precedex®) is considered as a sedative agent which is widely used as an adjuvant in general anesthesia and critical care practice. There is extensive evidence indicating its neuroprotective properties especially in various ischemic and hemorrhagic brain injury models of animals. Clinical trials have shown that dexmedetomidine (DEX) can improve the outcome of intensive care unit (ICU) patients. Also, DEX is appropriate as a non-opioid analgesic therapy whenever minimizing opioid-related side effects is necessary. The present article reviews the recent advances in the use of DEX as a neuroprotective agent in both animal and human studies including newest findings about the mechanism of the drug as well as analgesic efficacy of this drug at all perioperative stages. In spite of the beneficial effects of the drug on the nervous system, there are potential adverse effects, such as hypotension and bradycardia, which can be treated pharmacologically and must be taken into consideration by clinicians.

Download full-text PDF

Source
http://dx.doi.org/10.1080/15360288.2021.1914280DOI Listing

Publication Analysis

Top Keywords

neuroprotective properties
8
dexmedetomidine analgesic
4
analgesic agent
4
agent neuroprotective
4
properties experimental
4
experimental clinical
4
clinical aspects
4
aspects dexmedetomidine
4
dexmedetomidine dexdor
4
dexdor precedex®
4

Similar Publications

Background: We investigated chitosan's protective effects against tertiary butylhydroquinone (TBHQ)-induced toxicity in adult male rats, focusing on cognitive functions and oxidative stress in the brain, liver, and kidneys.

Methods: Rats were divided into four groups (n = 8/group): (1) Control, (2) Chitosan only, (3) TBHQ only, and (4) Chitosan + TBHQ.

Results: TBHQ exposure led to significant cognitive impairments and increased oxidative stress, marked by elevated malondialdehyde (MDA) and decreased superoxide dismutase (SOD) and glutathione (GSH) levels.

View Article and Find Full Text PDF

Evolution of Alzheimer's Disease Therapeutics: From Conventional Drugs to Medicinal Plants, Immunotherapy, Microbiotherapy and Nanotherapy.

Pharmaceutics

January 2025

Laboratorio Experimental de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez, Mexico City 14269, Mexico.

Alzheimer's disease (AD) represents an escalating global health crisis, constituting the leading cause of dementia among the elderly and profoundly impairing their quality of life. Current FDA-approved drugs, such as rivastigmine, donepezil, galantamine, and memantine, offer only modest symptomatic relief and are frequently associated with significant adverse effects. Faced with this challenge and in line with advances in the understanding of the pathophysiology of this neurodegenerative condition, various innovative therapeutic strategies have been explored.

View Article and Find Full Text PDF

Neuroprotective Effect of Melatonin Loaded in Human Serum Albumin Nanoparticles Applied Subconjunctivally in a Retinal Degeneration Animal Model.

Pharmaceutics

January 2025

Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina.

Background/objectives: Neurodegenerative ocular diseases, such as age-related macular degeneration (AMD) and glaucoma, represent growing public health concerns. Oxidative stress plays a key role in their development, damaging retinal cells and accelerating disease progression. Melatonin (Mel) is a potent antioxidant with neuroprotective properties; however, it faces limitations such as low solubility.

View Article and Find Full Text PDF

Retinal Protection of New Nutraceutical Formulation.

Pharmaceutics

January 2025

Innovation and Medical Science, SIFI S.p.A., 95025 Aci Sant'Antonio, Italy.

Retinal ganglion cell (RGC) protection represents an unmet need in glaucoma. This study assessed the neuroprotective, antioxidant, and anti-inflammatory effect of a new nutraceutical formulation named Epicolin, based on citicoline, homotaurine, epigallocatechin-3-gallate, forskolin, and vitamins, through in vitro and in vivo studies. The neuroprotective effect of Epicolin or its single components, and Epicolin compared to an untreated control and two marketed formulations [Formulation G (FG) and N (FN)], was evaluated in neuroblastoma cells (SH-SY5Y) challenged with staurosporine.

View Article and Find Full Text PDF

The search for neuroprotective compounds in lavender is driven by its traditional use for brain health, with antioxidant activity serving as a key mechanism in reducing oxidative stress and supporting cognitive function. Lavender's potential to protect neurons is based on its calming, anti-stress properties, which increase the brain's resistance to neurodegeneration. Although lavender is not a traditional medicinal plant in Ukraine, it is increasingly recognised for its medicinal properties and is widely cultivated in the country.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!