Yellow-eyed penguins, Megadyptes antipodes, are an endangered species that are endemic to New Zealand. Outbreaks of diphtheritic stomatitis have caused significant mortality for this species, especially among young chicks. In this study, we isolated 16 sp. isolates from the oral cavities of 2- to 14-day-old chicks at a range of infection stages and sequenced the genomes to understand their virulence mechanisms. Phylogenomic and matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) characterization indicate that these strains belong to a novel species. A simple multiplex PCR-based diagnostic assay has been developed to identify these strains rapidly and reliably. Similar to other corynebacteria, genomic islands and prophages introduced significant diversity among these strains that has potentially led to minor functional variations between the two lineages. Despite the presence of multiple corynebacterial virulence genes and a -type pilus gene cluster among these strains, the survival rate was much higher in Galleria mellonella larvae than in those inoculated with Corynebacterium ulcerans NZRM 818 and Corynebacterium pseudotuberculosis NZRM 3004. Therefore, these strains are opportunistic pathogens causing high mortality among young penguin chicks due to a less-developed immune system. Yellow-eyed penguins, Megadyptes antipodes, are endangered species with a sharp decline in the numbers of breeding pairs over the last 2 decades. Diphtheritic stomatitis, characterized by a thick fibrinopurulent exudate in the oral cavities and symptoms, including inanition and significant weight loss, is responsible for significant mortality among the young chicks. These chicks are treated with antibiotics, amoxicillin-clavulanic acid or enrofloxacin, but do not always recover from the infection. The pathogen causing these infections and the mechanism of pathogenesis are unclear. This study has identified a novel species to be associated with diphtheritic stomatitis in yellow-eyed penguins with potential virulence genes that are likely involved in pathogenesis. Importantly, a gene encoding an exotoxin, phospholipase D, is present among these strains. The inactivated form of this enzyme could potentially be used as an effective vaccine to protect these penguins from infection.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8269222 | PMC |
http://dx.doi.org/10.1128/mSystems.00320-21 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!