Abnormally elevated expression of the imprinted PHLDA2 gene has been reported in the placenta of human babies that are growth restricted in utero in several studies. We previously modelled this gene alteration in mice and found that just 2-fold increased expression of Phlda2 resulted in placental endocrine insufficiency. In addition, elevated Phlda2 was found to drive fetal growth restriction (FGR) of transgenic offspring and impaired maternal care by their wildtype mothers. Being born small and being exposed to suboptimal maternal care have both been associated with the increased risk of mental health disorders in human populations. In the current study we probed behavioural consequences of elevated Phlda2 for the offspring. We discovered increased anxiety-like behaviours, deficits in cognition and atypical social behaviours, with the greatest impact on male offspring. Subsequent analysis revealed alterations in the transcriptome of the adult offspring hippocampus, hypothalamus and amygdala, regions consistent with these behavioural observations. The inclusion of a group of fully wildtype controls raised in a normal maternal environment allowed us to attribute behavioural and molecular alterations to the adverse maternal environment induced by placental endocrine insufficiency rather than the specific gene change of elevated Phlda2. Our work demonstrates that a highly common alteration reported in human FGR is associated with negative behavioural outcomes later in life. Importantly, we also establish the experimental paradigm that placental endocrine insufficiency can program atypical behaviour in offspring highlighting the under-appreciated role of placental endocrine insufficiency in driving disorders of later life behaviour.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8444454 | PMC |
http://dx.doi.org/10.1093/hmg/ddab154 | DOI Listing |
Anim Sci J
January 2025
Laboratory of Animal Breeding and Reproduction, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan.
Heat stress negatively affects the reproductive function of in animals and humans. Although a relationship between heat and oxidative stress has been suggested, the underlying mechanism has not been sufficiently examined in reproduction-related cells. Therefore, we aimed to investigate whether heat stress induces oxidative stress using a variety of reproduction-related cells including bovine placental and cumulus-granulosa cells, human cell lines derived from cervical and endometrial cancers, and fibroblasts derived from endometrium.
View Article and Find Full Text PDFLife Sci
January 2025
Studies of the Physiopathology of the ovary laboratory, Institute of Biology and Experimental Medicine (IBYME) - National Scientific and Technical Research Council (CONICET), Vuelta de Obligado 2490, C1428ADL Buenos Aires, Argentina. Electronic address:
Aims: Metformin has shown beneficial effects on reproduction in women. However, its use during pregnancy remains controversial, as metformin can cross the placenta. Most studies have focused on the metabolic impact on the offspring of treated mothers, with limited information regarding its reproductive effects.
View Article and Find Full Text PDFAnal Methods
January 2025
Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai 200092, China.
Intrahepatic cholestasis of pregnancy (ICP) is a pregnancy-specific liver disorder that typically leads to severe pregnancy outcomes. Although genetic, endocrine, and environmental factors are involved in the etiology of ICP, the role of metabolic disorders remains unclear. Here we report an examination of the biomolecular alterations in placental tissues of women with ICP and healthy pregnant women at a molecular level.
View Article and Find Full Text PDFMed Gas Res
June 2025
Department of Surgery, Queen Elizabeth Central Hospital, Blantyre, Malawi.
Preeclampsia affects 2% to 8% of pregnancies worldwide and results in significantly high maternal and perinatal morbidity and mortality, with delivery being the only definitive treatment. It is not a single disorder, but rather a manifestation of an insult(s) to the uteroplacental unit -whether maternal, fetal, and/or placental. Multiple etiologies have been implicated, including uteroplacental ischemia, maternal infection and/or inflammation, maternal obesity, sleep disorders, hydatidiform mole, maternal intestinal dysbiosis, autoimmune disorders, fetal diseases, breakdown of maternal-fetal immune tolerance, placental aging, and endocrine disorders.
View Article and Find Full Text PDFJ Cell Mol Med
January 2025
Interdisciplinary Research Institute of Grenoble, IRIG-Biosanté, University Grenoble Alpes, INSERM, CEA, UMR 1292, Grenoble, France.
Preeclampsia (PE) is the most threatening pathology of human pregnancy. Placenta from PE patients releases harmful factors that contribute to the exacerbation of the disease. Among these factors is the prokineticin1 (PROK1) and its receptor, PROKR2 that we identified as a mediators of PE.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!