Cytosine base editors (CBEs) have the potential to correct human pathogenic point mutations. However, their genome-wide specificity remains poorly understood. Here we report Detect-seq for the evaluation of CBE specificity. It enables sensitive detection of CBE-induced off-target sites at the genome-wide level. Detect-seq leverages chemical labeling and biotin pulldown to trace the editing intermediate deoxyuridine, thereby revealing the editome of CBE. In addition to Cas9-independent and typical Cas9-dependent off-target sites, we discovered edits outside the protospacer sequence (that is, out-of-protospacer) and on the target strand (which pairs with the single-guide RNA). Such unexpected off-target edits are prevalent and can exhibit a high editing ratio, while their occurrences exhibit cell-type dependency and cannot be predicted based on the sgRNA sequence. Moreover, we found out-of-protospacer and target-strand edits nearby the on-target sites tested, challenging the general knowledge that CBEs do not induce proximal off-target mutations. Collectively, our approaches allow unbiased analysis of the CBE editome and provide a widely applicable tool for specificity evaluation of various emerging genome editing tools.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41592-021-01172-w | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!